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Abstract 

 The goal of this Trident Scholar project was to isolate the iris, the colored part of the eye, 

in a non-orthogonal, digital image of the human eye.  A non-orthogonal image is an image where 

the eye is not looking directly at the camera.  Iris pattern differs significantly between individuals 

(including identical twins), which allows for its use as an accurate biometric identifier. 

 Both commercial and research iris recognition systems are becoming widespread in 

government and industry for logical security and access control.  These iris recognition systems 

assume that captured iris images are normal, or orthogonal, to the sensing devices, and therefore 

search for circular patterns in the image.  Off-angle, or non-orthogonal, images of irises cannot 

currently be used for identification because the iris appears elliptical; commercial algorithms 

cannot isolate an elliptical iris in order to start the identification process.  This research expanded 

the functionality of iris recognition technology by developing a set of new algorithms to isolate a 

non-orthogonal iris in a digital image.   

The algorithmic approach was to first isolate the pupil, the dark portion in the center of 

the eye.  The pupil was isolated using bit-plane processing.  The pupil appeared as a large 

homogenous region surrounded by insignificant noise, which allowed for easy definition of the 

pupil-iris boundary.  Next, the limbic boundary (the outer edge of the iris) was determined in the 

cardinal directions, and an ellipse was calculated that incorporated those points.  After all 

boundaries were calculated, an “iris mask” was created to identify pixels in the image that 

contained the iris data, the only pixels of value for the identification of an individual.   

The functionality of the algorithm was tested using a database collected at the United 

States Naval Academy.  Both orthogonal and non-orthogonal iris images were used to collect 

quantitative results. 

Keywords:  non-orthogonal, iris, segmentation, biometric, bit-plane, identification 
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Definition of Terms 

Binary Image:  A binary image is an image that consists of only two colors – black and white.  

An integer value of zero is represented by a black pixel and an integer value of one is represented 

by a white pixel (see Fig. 1). 

 

Binary Threshold:  A threshold is a pivot value set for grayscale images from which a new 

binary image is formed.  In a 256 level grayscale image, an image value of 0 is black and an 

image value of 255 is white.  All other intensity shades fall as integer values between 0 and 255.  

Image pixel values of equal or greater value than the threshold are set to one, and image values 

less than the threshold are set to zero.  The resulting image is a binary, two-tone representation of 

the original image.  Figure 2 shows a grayscale image and a resulting binary image with a 

threshold value of 128. 

Figure 1: Binary image. 

Figure 2: (a) Original cameraman image in 256 grayscale. (b) Image after threshold at a pixel value of 128. 
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01011011 11111111 01001010 

01010000 11000011 00010011 
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1 1 0
0 1 1
0 1 1

91 255 74 
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218 107 79 

Figure 3: Generating a bit-plane: Original decimal number matrix (left). 3x3 matrix of 8-bit numbers (grayscale 
image) (center). Resulting 3x3 matrix of last bit only (binary image) (right). 

Bit-Plane:  A bit-plane is a matrix of binary numbers (ones and zeros only) that is formed by 

removing one bit from the same position of every pixel value in an image.  Every color in an 

image is represented by an integer number.  For grayscale images, the values (or shades of gray 

intensity) range between 0 and 255, and each integer can be represented with eight bits.  Figure 3 

illustrates the formation of a bit-plane by removing the last bit in each of the nine binary 

numbers represented.   

Cornea: The cornea is the transparent part of the coat of the eyeball that covers the iris and pupil, 

and admits light to the interior. 

False Acceptance Rate:  False acceptance rate (FAR) is the percent of false matches.  In physical 

security applications, it is the percentage of unauthorized users that are incorrectly identified as 

authorized users, and are granted access to a secure facility.  This is mathematically computed 

as:  

                                            
attempts ofNumber 

matches false ofNumber (%) =FAR .                                            (1) 

False Rejection Rate:  False rejection rate (FRR) is the percent of false non-matches.  In physical 

security applications, it is the percentage of authorized users that are incorrectly identified as 

unauthorized users, and are consequently denied access to a secure facility.  This is 

mathematically computed as: 

                                           
attempts ofNumber 

rejections false ofNumber (%) =FRR .                                            (2) 



 

 

9
Hamming Distance:  In comparing two bit patterns, the Hamming distance is the percentage of 

bits that are different in the two patterns. For commercial iris recognition algorithms, a Hamming 

distance of less than 0.32 constitutes a positive match. More generally, if two ordered lists of 

items are compared, the Hamming distance is the number of items that do not identically agree 

[2].   

Iris: The iris is the opaque, colored portion of the eye that surrounds the pupil.  Under near 

infrared light, it appears as the annular gray region outside the dark pupil (see Fig. 4). 

Iris Code:  An iris code is a binary matrix, representative of an individual’s iris pattern.  An iris 

code stored in a database is considered the template to which future iris codes are tested in order 

to determine similarity.  Figure 5 is a sample binary iris code. 

Figure 5: Sample binary iris code. 

Figure 4: Sample near-infrared iris image. 

Sclera 
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Limbic Boundary: The limbic boundary is the boundary distinguishing the separation between 

the iris and the sclera.  This is the outer boundary of the iris (see Fig. 4). 

Pupil: The pupil is the homogenous aperture in the center of the iris. 

Pupillary Boundary: The pupillary boundary is the boundary distinguishing the separation 

between the pupil and the iris.  This is the inner boundary of the iris (see Fig. 4). 

Sclera: The sclera is the opaque white outer coating enclosing the eyeball, except the part 

covered by the cornea (see Fig. 4). 

Standard Deviation Window:  A standard deviation window is a neighborhood about each pixel 

in an image in which the standard deviation of all values within the neighborhood is calculated 

and saved in the window’s origin.  The standard deviation is the best measure of dispersion 

around the arithmetic mean.  The standard deviation for a set of numbers is given by: 

                                         
1

)(
1

2

−

−
=
∑
=

n

x
SD

n

i
i µ

,                                          (3) 

where xi is the ith data value, µ is the arithmetic mean of the data points, and n is the number of 

data points.  For example, a 3x3 neighborhood is a matrix with 9 data points. 
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Figure 6. A human eye. 
http://www.cl.cam.ac.uk/users/jgd1000/sampleiris.jpg

1. Introduction 

  Biometric recognition refers to the automatic authentication of a person based on his or 

her physiological or behavioral characteristics [3].  This emerging field uses unique and 

measurable physical, biological, or behavioral characteristics that can be processed electronically 

to establish identification, and to perform identity verification or automated recognition of a 

person [4].  While traditional means of authentication, primarily passwords and personal 

identification numbers (PINs), have recently dominated computing, stronger authentication 

technologies capable of providing higher degrees of certainty are becoming commonplace [5].  

Identification, positively matching an individual to a member of a database, and verification, 

making sure an individual is who he or she claims to be, are the two main uses and areas of 

expansion in the field of biometrics. 

  Identifying or verifying (henceforth to be referred to as identifying) a subject through the 

use of biometrics takes a biological feature of an individual and matches it against templates 

previously stored in a database.  Traditional features include iris (see Fig. 6), retina, fingerprint, 

voice, and face images.  Over the last ten years, algorithms used to digitize and process biometric 

signals have been enhanced to increase both accuracy over repeated uses and precision in 



 

 

12
matching users to their respective database entries.  Of the five biometric features cited, iris 

images and fingerprint patterns are currently the most reliable and trusted forms of biometric 

identification. 

The iris is the round, pigmented tissue that lies behind the cornea [6]. The patterns within 

the iris are very unique to each person, and even the left eye is unique in comparison to the right 

eye [7]. Compared with other biometric features such as face and fingerprint, iris patterns are 

more stable and reliable [8, 9]. 

Since ophthalmologists Flom and Safir first noted the uniqueness of the iris patterns in 

1987 [10], various algorithms have been proposed for iris recognition [6, 11-17], which include 

the quadrature 2D Gabor wavelet method [6],  the Laplacian parameter approach [13],  zero-

crossings of the one-dimensional (1D) wavelet [14],  the independent component analysis (ICA) 

approach [15],  Gabor filtering and wavelet transform [16], and the texture analysis using multi-

channel Gabor filtering and the wavelet transform [17].  Recently, Du et al. designed a local 

texture analysis algorithm to calculate the local variances of iris images and generate a one-

dimensional iris signature [11, 12], which relaxed the requirement of an entire iris for 

identification and recognition [12].  However, all of these algorithms assume that a circular iris 

pattern has been successfully extracted from an image of the eye. 

 In practice, the iris pattern must be extracted from the image prior to analysis.  Currently, 

iris recognition systems require a cooperative subject [8].  Both commercial systems that utilize 

Daugman’s algorithm [18] and other separately developed iris recognition techniques like the 

one-dimensional approach developed by Du et al. [11, 12] rely on this supposition to detect the 

iris pattern using circular edge detection.  As an iris image is rotated away from the normal 

(ninety degrees perpendicular, see Fig. 7) with respect to the imaging device, these systems are 

unable to successfully locate the iris pattern in order to proceed to recognition and matching.   
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 This project utilized MATLAB to develop algorithms that would analyze a digitized 

image of a subject’s iris in order to extract the iris pattern using elliptical boundaries.  Currently, 

an individual needs to approach an iris scanner, look directly into the imaging device (a digital 

camera), allow the device to capture an image, and then wait for identification.  This process 

currently takes approximately three to five seconds.  By requiring a cooperative user, the 

imaging device ensures that the iris image will be circular since the user is always forced to look 

directly into the imaging device.  The ability to assume a circular iris pattern simplifies the iris 

localization algorithms, allowing the algorithms to use circular edge detection.  The newly 

written algorithms no longer require a circular iris for the successful extraction of the iris pattern.  

Instead, an iris pattern is removed from the image even if the iris is imaged at an angle that is not 

normal to the sensor.  A varying range of off-angle iris images were evaluated to demonstrate 

algorithmic applicability over a diverse data set. 

One major application for such an algorithm is covert surveillance [3].  The use of 

biometrics for covert identification as opposed to more intrusive forms of authentication poses 

many technical challenges such as inconsistent viewing angles, varying distances from the 

detector, and subjects that do not remain stationary [3].  As the circular iris is rotated away from 

Figure 7: Iris image normal to imaging device.
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the normal when captured by an imaging device as seen in Fig. 8, the iris becomes elliptical and 

the edge detection algorithms employed by current commercial systems reject the images for iris 

extraction.  With advanced algorithms able to process elliptical iris patterns, steps toward 

creating a covert system for personnel identification begin.  By eliminating the need for a 

cooperative user to interact with an imaging device, the identification of unsuspecting 

individuals becomes plausible.  Results from this research show that it is possible to fit an 

elliptical approximation to both orthogonal and non-orthogonal iris patterns using a single set of 

algorithms.  The approximation is used to extract iris pattern data from digital images, which can 

potentially be adapted for implementation in a non-orthogonal iris recognition system. 

Figure 8: Iris image non-orthogonal to imaging device.
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2. Background 

 Every iris is unique and thus can distinguish one individual from another.  Iris patterns, 

unlike facial features used for facial recognition, do not change over time.  The iris and its 

uniquely individual patterns are formed before birth and remain stable throughout an individual’s 

lifetime [5].  The patterns of an iris, once captured by a camera, can be analyzed, and the 

resulting features can be used to quantitatively and positively distinguish one eye from another. 

The iris contains many collagenous fibers, contraction furrows, coronas, crypts, colors, 

serpentine vasculatures, striations, freckles, rifts, and pits as seen in Fig. 9. Measuring the 

patterns of these features and their spatial relationships to each other provides quantifiable 

parameters useful to the identification process [19].   

 Each iris differs due to embryonic genetic development.  From the time a person is 

developing at the cellular level, patterns unique to that individual form in the iris by the random 

tearing of iris tissue, ensuring that even identical twins are distinguishable.  Iris patterns even 

differ between eyes – an individual is identifiable by either his or her right or left eye [5].  Thus 

the uniqueness of every iris makes it an incredibly accurate biometric identifier.  Based on 

Figure 9: Near infrared iris images with artificial color depicting surface textures. 
http://www.cl.cam.ac.uk/users/jgd1000/iriscollage.jpg 
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mathematical analysis of iris code comparisons performed at the Computer Laboratory at 

Cambridge University using the current commercial algorithm, the odds that two different irises 

generate sufficiently similar codes to produce a false match is theoretically 1 in 1.2 million [19].  

This theoretical probability is generated based on the number of bits stored in each iris code and 

the requirement that two iris codes must be identical in at least one-third of the bits in order to 

return a match. This probability makes iris recognition extremely effective for security 

applications. 

  The process for biometric recognition using the iris can be described as a series of steps 

that make up an architectural framework. This framework for recognition can be divided into 

five subcomponents, each with its own set of algorithms governing the tasks required of it. 

Figure 10 shows a flow chart of the architectural framework for iris recognition.   

 
Figure 10: Architectural framework for iris recognition 

Iris Image Iris Preprocessing Iris Detection

Iris Code Generation

Comparison

Template 
Database

Hamming Distance –or–
Alternative Comparison Metric Decision
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These subcomponents depicted above are described as: 

1) Image Preprocessing. In this stage, the first step is to determine the location of the pupil. 

Then, the iris is characterized using a variety of techniques such as a full unwrapping of 

the iris to polar coordinates, and making adjustments for illumination, scale and rotation 

variation.  For non-orthogonal iris recognition, there is no transformation to polar 

coordinates from rectangular coordinates; however, illumination and orientation are still 

accounted for. 

2) Iris Detection. This stage involves locating the outer edge of the iris and separating it 

from the remaining portions of the eye. The data representing the iris itself is called the 

iris pattern.  The iris pattern contains all useful data required for making a positive 

identification. 

3) Iris Code Generation. Here, the actual templates (sometimes referred to as the iris code) 

that will be stored in the database for authorized individuals are created.  Additionally, 

the iris code that will be tested against the database for identification/verification is 

created.  

4) Comparison. This stage performs identification/verification by comparing the now-

processed code of the presented iris to the iris codes that have been stored in a database. 

This stage computes the differences between the processed iris code and the stored 

templates. 

5) Decision. As the final stage in the iris identification process, this stage makes decisions 

based on comparisons performed in the preceding stage. It can return up to N possible 

matches above a given threshold that has been set by a system designer.  Current 

commercial systems, however, force a logical output: either an individual is identified or 

is rejected. 



 

 

18
This research focuses on the first two of the five “plug-and-play” steps for biometric 

identification: image preprocessing and iris detection.  The iris detection stage is critical to the 

successful completion of recognition.     
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3. Project Description 

 The main goal of this research was to expand the functionality of iris recognition 

technology by developing a set of new algorithms to isolate the iris in a non-orthogonal state 

within a digital image.  Coding for the algorithms was completed primarily with MATLAB 7.0.  

Developed code can be found in Appendix A.  The functionality of the algorithm was tested 

using 129 orthogonal and 236 non-orthogonal iris images from a database collected at the United 

States Naval Academy.  In order to conduct biometric research on human subjects at the U.S. 

Naval Academy, a proposal was submitted by the biometrics faculty in the Electrical 

Engineering Department to the Institutional Research Board (IRB) outlining the methods for 

collection and the ways in which data would be used for research.  Before any human subject 

allows for the capture of his or her biometric data, he or she must complete and sign a copy of 

the Consent and Information Form found in Appendix B.  
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3.1. Pupillary Boundary Detection 

  To find the pupillary boundary, the least significant bit-plane must be extracted for 

analysis.  Bit-plane 0, the least significant bit-plane, is used to determine the pupillary boundary 

because it not only provides a relatively homogenous region that is easily identifiable as the 

pupil, but also because it is fast and easy to extract from the original image by using modulo 

division.  In integer division, the result is a quotient and a remainder.  However, modulo division 

is the operation with a result equal only to the remainder.  When dividing by two, the remainder 

can only be either a one or a zero.  After performing modulo-2 division on the image, the result 

forms the least significant bit plane.  To aid in extracting the least significant bit-plane, a series 

of image preprocessing steps much be performed. 

 The first step towards achieving a homogenous region that can be identified as the pupil (see 

Fig. 11) is to adjust the original image by setting the pixel values below 60 and above 240 equal 

to 255.  These upper and lower bounds were derived empirically for use with the USNA database 

Iris.bmp - Bit plane 7 Iris.bmp - Bit plane 6 Iris.bmp - Bit plane 5 Iris.bmp - Bit plane 4

Iris.bmp - Bit plane 3 Iris.bmp - Bit plane 2 Iris.bmp - Bit plane 1 Iris.bmp - Bit plane 0

Figure 11: (a) Most significant bit-plane 7. (b) bit-plane 6. (c) bit-plane 5. (d) bit-plane 4. (e) bit-plane 3. (f) bit-
plane 2. (g) bit-plane 1. (h) bit-plane 0. 

(a) (b) (c) (d) 

(e) (f) (g) (h) 
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images.  The pixel intensity in a grayscale image ranges from 0 to 255, with 0 representing black 

and 255 representing white.  By adjusting the original iris image, all extremely dark and 

extremely light regions are forced white.  Once the bit-planes are extracted from the original 

image, the pupil is represented by a homogeneous mass of binary ones in all bit-planes as seen in 

Fig 11.  Figure 12(a) shows the adjusted least significant bit-plane after it has been extracted 

from the original iris image. 

  The purpose for adjusting values between 240 and 255 – extremely light values – to 

white is to reduce the effect of specularities, or glare, that may be present in the pupil.  Pixel 

intensities of the pupil region – extremely dark values – in iris images collected from the LGIris 

3000, the imaging device used to collect the Naval Academy database, were found to typically 

range from 30 to 50 due to the infrared illumination generated by the camera.  Therefore, a lower 

threshold of 60 was used for adjusting the pupil to a single uniform value. 

  Since the eye is approximately in the center of the images collected, the borders of the 

bit-plane are removed (Fig. 12(b)) to minimize the effects of near-infrared glare reflecting off the 

Figure 12: Iris pupil location (a) Least significant bit-plane (bit-plane 0). (b) Bit-plane 0 with borders removed. 
(c) Bit-plane 0 after morphological “open” performed. (d) Final mask of pupil extracted. 

(a) (b)

(c) (d)
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lighter pigmented skin above and below the iris.  Glare is represented by high pixel values which 

appear as clusters of binary ones in all bit-planes.  These larger groupings of ones must be 

removed prior to pupil extraction.  Once the borders have been removed, excessive noise must be 

eliminated from the binary image.   

  To remove the random noise, the binary morphological operation “open” is performed.  

The open function is defined as binary erosion followed immediately by binary dilation.  Binary 

erosion shrinks groupings of ones (white pixels) that are larger than three pixels in diameter, and 

completely eliminates groupings of ones that occur in pairs or stand alone.  Conversely, binary 

dilation expands groupings of ones.  In order to maintain the original size and shape of the pupil, 

binary dilation must follow binary erosion.  The result, as shown in Fig. 12(c), is the removal of 

a substantial portion of the image’s noise.  Despite the small amounts of remaining clustered 

noise, the pupil can now be extracted by isolating the largest mass of binary ones that remains in 

the bit-plane (Fig. 12(d)).   

  To aid in properly extracting the pupil from the image, the built-in MATLAB function 

regionprops(…) is utilized to provide image statistics.  In binary images, the function returns 

information including the area (number of pixels), lengths of the major and minor axes, 

orientation, and centroid (the center pixel location) for every cluster of ones.  By quickly 

searching the list of areas generated by the function, the pupil statistics are readily available since 

the pupil is the only large remaining group of ones.  Once the pupil and its associated statistics 

are obtained, the boundary points in the cardinal directions – N, E, S, and W – are determined.  

Because the center location of the pupil is known, these boundary points are easy to find.  By 

starting at the center and checking outward in a given direction, the end points of the pupil are 

quickly located and used to calculate the elliptical curve that will ultimately define the pupillary 

boundary.   Equation (4) is used to determine the elliptical curve, 
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where b and a are the lengths of major and minor axes, and x and y are the row and column 

coordinates of the ellipse.  Equation (4) can be rewritten as 
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and the elliptical curve calculated from these points forms the pupillary boundary as seen in Fig. 

13.   The orientation, or tilt, of the pupil is accounted for by rotating the ellipse in accordance 

with the orientation factor previously determined using the MATLAB function regionprops(…). 

Since the pupil is always fully contained within the iris, these cardinal boundary locations 

provide the starting point in identifying the limbic boundary, the next step in iris pattern 

segmentation. 

Figure 13: Elliptical curve fit through cardinal points of pupil mask (left). Pupillary boundaries overlain on 
original iris image (right). 
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3.2. Limbic Boundary Detection 

   Once the pupillary boundary has been successfully determined, the limbic boundary must 

be isolated.  To find the limbic boundary (the division between the iris and the sclera) a local 

standard deviation window is used to create a new image that represents local changes in image 

grayscale intensity.  For image locations where the difference in grayscale values from one pixel 

to the next is large, the new image is represented by light colors.  On the other hand, if there is 

minimal grayscale value variation in a region of the original image, the newly created image is 

dark in the corresponding areas.   A 45x45 standard deviation window is applied throughout the 

original iris image.  A new image is formed in which each pixel contains the local standard 

deviation from the 45x45 standard deviation window.  The new image is converted into a binary 

image based on a dynamic threshold.  The dynamic threshold is computed by taking the local 

mean of each window.  The local mean for a window is the average value of each pixel 

contained in the window.  Figure 14 shows an original iris image and the resulting binary image 

based on the dynamic threshold after a 45x45 standard deviation window has been applied. 

   In order to isolate the iris pattern from the binary image in Fig 14(b), the scope of 

Figure 14:  (a) Original Iris Image. (b) Resulting binary image after a square standard deviation window of side 
length forty-five and a dynamic local threshold have been applied. 

(a) (b) 
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applicable search regions must be limited.  By limiting the detection directions to vertical and 

horizontal bands, the cardinal locations from which to derive an elliptical boundary can be 

isolated.  To create the vertical and horizontal bands needed for iris segmentation, the pupil’s 

centroid (previously determined in the pupillary boundary location phase) is used as a reference.  

While not always located exactly in the center of the iris, the pupil’s location is such that it is 

reasonable to estimate that the pupil’s centroid is equivalent to the iris’s centroid.  Therefore, a 

single pixel-wide band is extracted from the binary image in the vertical and horizontal direction 

as shown in Fig. 15.  These bands effectively eliminate unimportant regions of the 

original image and allow for concentration of limbic boundary detection in the cardinal 

directions. 

   In order to determine the limbic boundaries from the binary horizontal and vertical 

bands, the pupillary boundary coordinates in the cardinal directions must be known.  These 

(a)  (b) 

(c)

Figure 15: (a) Binary image of eye after local standard deviation window applied. (b) Binary vertical band taken 
through center of pupil.  The band is one pixel wide and 480 pixels high. (c) Binary horizontal band taken 
through center of pupil.  The band is 640 pixels wide and one pixel high. 
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coordinates provide a starting location for the search of the limbic boundary because the limbic 

boundary must be located outside of the pupillary boundary.  By starting at the previously 

determined pupillary boundaries, and searching outward in the cardinal directions, the limbic 

boundaries can be isolated. 

   To automatically isolate the limbic boundary using the horizontal and vertical local 

standard deviation bands, an iterative method is used.  In the vertical direction, the binary 

vertical band is analyzed for potential boundaries.  Based on the previously defined local 

standard deviations and dynamic thresholding, major image intensity changes are displayed as 

horizontal white lines within the band.  Two of the lines represent the pupillary boundaries and 

two of the lines represent the limbic boundaries in the N and S directions.  The first step is to 

mark the pupillary boundary lines as the initial guess of the limbic boundary locations.  

Although this cannot be the actual location, it provides an absolute minimum location for the 

limbic boundaries.  Figure 16 shows the initial starting search locations of the limbic boundaries 

(based on the previously determined pupillary boundaries) in both the binary vertical band, Fig. 

16(a), and in an overlay of the original iris image, Fig. 16(b). 

 

Figure 16: (a) Initial limbic boundary locations in the vertical direction. (b) Overlay of initial limbic boundaries 
on original image. 

(a) (b)
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   The second step is to search for the next potential limbic boundary.  To do so, the next 

closest white line in the binary band is identified.  This new limbic boundary replaces the former 

marker.  A check to ensure the new boundary is a realistic possibility is performed.  The check 

verifies that the new marker is not more that twenty pixels from the previous marker.  A distance 

of twenty pixels was heuristically determined to yield the best results for automatic limbic 

boundary detection.  Once the new marker is determined to be legitimate, step two is repeated 

until a marker is found to be more than twenty pixels from the previous marker.  In the case that 

the new markers are never more than twenty pixels away from the previous marker, the edge of 

the image is used as the location of the limbic boundary – a situation that will automatically alert 

one to a failure to properly segment the iris from the image. 

   Upon verification that a marker is outside the twenty pixel limit, the previous marker is 

set as the limbic boundary.  Figure 17 shows the iterative process of automatically finding and 

checking the validity of the limbic boundary.  Both the progression through the binary bands and 

their respective locations within the iris image are displayed.  Steps one through three are 

performed in an identical manner for locating and verifying the position of the horizontal limbic 

Figure 17:  Automated process for determining limbic boundaries. (a) The iterative process for determining 
limbic boundaries using the binary vertical band: Red to Yellow to Green to Blue (if necessary). (b) An overlay 
of corresponding locations for limbic boundary potentials. 

(a) (b)
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boundaries. 

   After all four limbic boundaries are determined in the cardinal directions, (5) is used to 

calculate the elliptical equation that will define the boundary of the iris.  The right and left 

portions of the limbic boundary are calculated and added separately.  By adding right and left 

boundaries, North and South locations are fixed and the East and West positions are varied.  This 

method was purposefully chosen to provide the most accurate iris mask model.  As the severity 

of the iris angle increases, the cornea covering the iris eventually causes one half of the iris to 

appear more elliptical than the other.  By modeling each half (right and left) of the limbic 

boundary separately, this phenomenon does not affect algorithm performance.   

   The limbic boundary equations are calculated independently of one another.  For 

example, when forming the right half of the limbic boundary, the N, S, and W portions of the 

boundary are known.  The E coordinate, while available, is not necessarily directly opposite and 

equidistant from the vertical axis to properly form an ellipse.  To find this appropriate 

coordinate, the location of the W boundary is mirrored across the vertical axis, and this 

imaginary location is used for an accurate calculation of the limbic boundary.  The same process 

occurs for the formation of the right limbic boundary.  As the angle at which the image of the iris 

is captured increases, the shape of the iris transforms from circular to elliptical.  However, at 

extreme angles, optical distortion effects of the cornea cause the closer portion of the iris to 

appear more vertical while the farther portions of the iris are more circular.  Each half can be 

accurately modeled as an ellipse; however, the ellipses are independent of one another and must 

be calculated separately. 

 The final step for limbic boundary creation is to account for changes in the vertical tilt of 

the iris.  As seen in Fig. 18, the initial limbic boundary does not necessarily match the orientation 



 

 

29

of the iris in the image.  Recall during pupil extraction that one of the parameters returned by the 

regionprops(…) function was “orientation”.  This parameter took into account the major and 

minor axes of each mass in the binary image and calculated its orientation relative to the 

Cartesian plane.  By rotating the pupillary and limbic boundaries to coincide with the orientation 

acquired earlier, the final boundaries calculated match the vertical tilt of the iris as seen in Fig. 

18(b).  The resulting area between the pupillary boundary and the limbic boundary forms the iris 

mask.  The mask allows for proper extraction of the iris pattern.  Figure 19 shows an original 

non-orthogonal iris image and the resulting segmented iris pattern.     

Figure 18: (a) Initial limbic boundary determination. (b) Boundary after orientation adjustments. 

(a) (b) 

N

Figure 19: (a) Original non-orthogonal iris image. (b) Segmented iris pattern. 

(a) (b) 
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4. Testing and Results 

  A “Quality Bound” is used as the metric for assessing the performance of the algorithm.  

It is the ability of the algorithm to properly extract iris pixels that is being measured.  The United 

States Naval Academy biometrics laboratory iris database was used for algorithm testing.  There 

were 129 orthogonal and 236 non-orthogonal iris images used. To test the algorithms’ 

performance, a graphical user interface (GUI) was developed.  The GUI allowed for a systematic 

routine to be followed for testing control.  Additionally, a quality measurement was created to 

quantitatively establish the algorithms’ performance.  Three quality bounds were calculated 

using: 

                   ( )
TP

MPTPMPKMPTPndQualityBou ∩−⋅−∩
= ,                             (6) 

with the variables defined as: 

TP True Pixels The number of pixels in the “truth" mask (acquisition covered in 4.1), 

MP Mask Pixels The number of pixels in the iris segmented by the algorithm, 

K Penalty The error penalty factor assessed for incorrectly identified iris pixels. 

 
The number of common pixels (CP) to both the segmented iris and the true mask is represented 

by the intersection of TP and MP as seen below: 

 MPTPCP ∩= .                             (7) 

The number of error pixels (EP) is defined as the number of pixels in the segmented iris minus 

the number of pixels common to both the segmented iris and the true mask.   

CPMPEP −= .                                    (8) 

By combining (6) – (8), the quality bound can be written simply as: 

         
TP

EPKCPndQualityBou ⋅−
= .       (9) 
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  The penalty factor, K, is used to help correctly assess the performance of the 

segmentation algorithms.  Factors of 10, 40, and 70 percent are used to scale the overall error 

penalty (8) in calculating the quality bound.  A factor of 10 is a lesser penalty than a factor of 70.  

The error penalty is based on the number of pixels that differ between the “test” and the “truth” 

iris masks.  The application of the penalty factor to the error penalty gives an understanding of 

the algorithm’s performance.  By evaluating the three separate quality bounds after the 10, 40, 

and 70 percent penalties have been assessed, a quality spread (or variation) can be determined.  

The variation is directly related to the number of superfluous pixels segmented as “truth” pixels 

(eyelashes, eyelids, etc.).  For example, if all three quality bounds are close in proximity, the iris 

pattern that was segmented automatically by the algorithm has relatively few pixels that are not 

true iris pattern pixels.  However, as the difference in quality bounds increases, the iris pattern 

that was segmented by the algorithm contains eyelashes and additional extraneous information.  

If all automatically generated “test” mask pixels fall within the “truth” iris mask, the error 

penalty is 0.  If the “truth” and “test” iris masks match perfectly, all three quality bounds will be 

1.0.  
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4.1. Graphical User Interface Design and Implementation 

 A graphical user interface (GUI) was designed for aid in testing the developed 

algorithms.  The GUI required the filenames of a “truth image” and an associated “iris image” as 

shown in Fig. 20.  The truth images were created prior to algorithm testing by using Adobe® 

Photoshop CS.  The iris’s boundaries were isolated using the magnetic rope tool – an imbedded 

feature of Photoshop CS.  Once the boundaries were isolated, the internal area of the boundaries 

was filled with white.  The white, value 255, allowed the GUI to quickly identify the iris pattern 

and extract the proper pixels associated with the pattern.  This provided a baseline for 

comparison to the automated process. 

Figure 20: “Truth” and initial “Iris Image” files loaded into GUI by user. 



 

 

33
 The original image was also a required input for the GUI to function properly.  Once 

loaded, the original image underwent the iris segmentation steps described in Sections 3.1 and 

3.2 (Fig. 21).  After the iris was properly segmented, a pixel-by-pixel comparison between the 

original and truth images was conducted.  The location of each pixel in the segmented iris pattern 

was compared to each pixel location of the truth image.  The number of common pixels (CP) was 

recorded and used as a parameter in (9).  Similarly, the total number of pixels in the truth image 

and the total number of pixels in the original test image were also used in (9) for calculation of 

the overall quality factor.  All three quality factors – 10%, 40%, and 70% – were simultaneously 

displayed as output within the GUI (Fig. 22). 

Figure 21: Iris segmentation completed by clicking on “Segment Iris.” 
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Figure 22: Final calculation of iris segmentation mask quality factors. 
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4.2 Experimental Data and Analysis 

A full listing of experimental data can be found in Tables (1) and (2) in Appendix B.  

Figure 23 and Fig. 24 compare performance of the algorithms for segmenting the iris pattern.   

 Orthogonal Images: Quality Rating - 10% Error Penalty
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Figure 23: Orthogonal iris segmentation quality with 10% error penalty. 

 

Non-Orthogonal Images: Quality Rating - 10% Error Penalty
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Figure 24: Non-orthogonal iris segmentation quality with 10% error penalty. 
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The Quality Bound is shown on the y-axis as a value between 0 and 1, and the number of the 

image segmented is shown on the x-axis.  There were 129 orthogonal images and 236 non-

orthogonal images that were processed to segment the iris pattern1.   

The 10% error penalty quality bounds cluster primarily above 0.9000 for the orthogonal 

images and above 0.8000 for the non-orthogonal images.  Similarly, the 40% and 70% error 

penalty quality bounds tend to cluster approximately ten percent lower for non-orthogonal iris 

images than orthogonal iris images (see Figs. 25-28).  This is primarily explained by the 

increased presence of eyelashes in the non-orthogonal iris masks.  As the angle at which an iris is 

captured increases, the more obstruction from eyelashes and eyelids tend to exist.   

Orthogonal Images: Quality Factor - 40% Error Penalty
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Figure 25: Orthogonal iris segmentation quality with 40% error penalty. 

                                                 
1 The orthogonal images tested were taken from a database of 129 different eyes.  The non-orthogonal images tested 
were taken from a database of 32 different eyes.  236 images were used for testing by analyzing multiple images of 
the 32 non-orthogonal eyes. 
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Non-Orthogonal Images: Quality Rating - 40% Error Penalty
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Figure 26: Non-orthogonal iris segmentation quality with 40% error penalty. 

 

Orthogonal Images: Quality Factor - 70% Error Penalty
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Figure 27: Orthogonal iris segmentation quality with 70% error penalty. 
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Non-Orthogonal Images: Quality Rating - 70% Error Penalty
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Figure 28: Non-orthogonal iris segmentation quality with 70% error penalty. 
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4.3 Analysis of Quantitative Data 

For each iris tested, all three quality bounds were recorded and a variation was calculated.  

The variation was equal to the average change in quality factors for a given iris.  The variation is 

an indication of how well the segmentation process performed for an iris image.  It is directly 

related to the segmentation discrepancies between the “truth” mask pixels and the automatically 

segmented “test” mask pixels.  The value of the variation relates to the presence of unusable data 

and, therefore, a lower variation means fewer eyelashes, eyelids, and other impurities in the iris 

mask.  For example, an iris with a lower quality factor and low variation may have a more usable 

iris mask for identification than an iris with a higher quality factor and a high variation (Fig. 29). 

 While Fig. 29(b) captures virtually all of the true iris pixels as shown by its 10% quality factor 

of 0.9201, the iris pattern mask also contains much additional noise (i.e. eyelashes and sclera).   

Associated research that explored the effects of using partial iris patterns for 

identification states that it is possible to identify an individual using the Du, et al 1-dimensional 

(1-D) algorithm with as little as twenty-five percent of an iris pattern (Appendix F).  For the 1-D 

algorithm to yield such results, the small fraction of an iris must come from the interior section 

Figure 29:  (a) Iris image 3 segmented with 10% quality factor of 0.7364 and variation of 0.0005 (low quality 
factor, low variation).  (b) Iris image 231 segmented with 10% quality factor of 0.9201 and variation of 0.0995 
(high quality factor, high variation). 

(a) (b) 
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of the iris (closest to the pupil).  This area of the iris was shown to contain the most 

distinguishable data.  Most of the results returning low values of quality ratings (ratings below 

0.7 at a 10% penalty) can be classified as similar to Fig. 29(a):  the iris mask boundaries fall 

within the true iris. 

Of the 129 orthogonal images, 6 images were FS, or failure to segment.  Four of the 236 

non-orthogonal images were FS.  An FS image was one in which the algorithms failed to 

properly segment the iris.  The main cause for a failure to acquire was usually due to image 

quality.  For example, in the image in Fig. 30, the iris was not located in the center of the image.  

While some leniency was given as to iris placement, the iris does need to be located closer to the 

center of the image due to the border elimination that took place during the pupillary boundary 

location stage.  As indicated earlier, the borders are removed from the bit-plane to help reduce 

the effects of glare in the pupil isolation stage.  However, when an image of insufficient quality 

and placement is processed, the borders that are removed may contain the pupil, causing an FS. 

Figure 30:  Iris image that failed to segment properly.  (a) Iris’s original least significant bit-plane. (b) Least 
significant bit-plane with borders removed.  (c) Resulting segmentation attempt. 

(a) 

(b) (c)



 

 

41
Another source of iris FS was specularities in an image.  Figure 31 shows a non-

orthogonal image whose specularities were more prominent than the pupil.  As the bit plane in 

Fig. 31 (a) demonstrates, the excessive glare from the near infrared camera caused the algorithm 

to assume that the specularities were, in fact, the pupil. 

Despite these minor problems due to image quality, however, the overall FS percentages were 

low:  4.6% for orthogonal images and 1.7% for non-orthogonal images.  FS images were not 

used in calculating the average quality factors.   

The algorithms’ performances using orthogonal and non-orthogonal irises were relatively 

comparable.  On average, the orthogonal iris segmentation’s quality factor was five percent 

greater than the non-orthogonal iris segmentation’s quality factor, 0.8719 and 0.8208 

respectively for a 10% error penalty.  The non-orthogonal performance had a slightly better 

average variation, 0.0412 compared to 0.0443, which means that fewer occlusions (eyelids and 

eyelashes) were included in the non-orthogonal iris masks.   

Performance of iris segmentation in reference to the overall iris recognition architectural 

framework (Fig. 10) indicates a successful module that can easily be incorporated into future 

Figure 31:  (a) Iris least significant bit plane.  (b) Iris image that failed to segment properly due to large 
specularities.  The specularities were extracted as the pupil. 

(a) (b) 
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research, specifically modules for template encoding and database matching.  Based on the 

partial iris research by Du et al. (Appendix F) and because the non-orthogonal segmentation 

algorithms provide upwards of 80% of the iris pattern on average, there is ample pattern 

available for accurate identification.  Additionally, by improving the algorithms to remove 

eyelashes and eyelids that are incorrectly identified as iris pattern, the overall error of the 

algorithms will decrease and only pure iris pattern will remain. 
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Figure 32: Iris images: (a)–(c) Non-orthogonal irises. (d)–(f) Resulting elliptical iris masks. 

(a) (b) (c) 

(d) (e) (f) 

5. Conclusions 

The quantitative results presented were calculated using iris images in which the user was 

(1) looking directly at the imaging device (Table 1), and (2) looking at an angle non-orthogonal 

to the imaging device (Table 2).  The purpose for approaching the issue of iris pattern extraction 

without the assumption that iris patterns were circular was to allow for the iris extraction of non-

orthogonally captured iris images.  Testing showed that a non-orthogonal approach to iris 

segmentation was possible as seen in Fig. 32. 

Because the iris images in Fig. 32 were rotated away from the normal with respect to the 

imaging device, current commercial systems developed complications in extracting the iris 

patterns.  Non-orthogonal iris images were tested at the National Security Agency’s Biometric 

Laboratory using research utilities provided by Iridian Technologies Inc., the patent holder on 

commercial iris recognition algorithms.  The commercial system would not recognize that an iris 

pattern existed within the image, and an error was returned.  However, results using the 

algorithms developed during this Trident research showed that it was possible to fit a close 
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elliptical approximation to non-orthogonal iris patterns using bit-planes and standard deviation 

windows. 

Once successful elliptical approximations of non-orthogonal iris patterns are isolated, 

steps one and two of the biometric architectural framework are complete.  The images have been 

successfully preprocessed, the pupillary boundary and limbic boundary determined, and the iris 

pattern removed.  Future research, proposed for next year, will complete the remaining steps of 

iris code generation, comparison, and matching determination.  The non-orthogonal iris pattern, 

extracted using the bit-plane and local standard deviation window techniques, will be used as the 

foundation for this research. 
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Appendix A:  MATLAB Source Code 

Function List: 

add_iris_boundaryL.m pg. 50 

add_iris_boundaryR.m pg. 51 

add_pupil_boundary.m pg. 52 

add_pupil_boundary.m pg. 53 

adjusted_bitzero.m pg. 54 

bottom_edge_test.m pg. 55 

get_iris_edges.m pg. 56 

get_mask.m pg. 58 

get_pupil_edges.m pg. 59 

gimage.m pg. 60 

iris_segmentation.m pg. 61 

left_edge_test.m pg. 62 

limbic_boundary6.m pg. 63 

localstats2.m pg. 66 

localstd.c pg. 67 

localthresh.c pg. 70 

middle_bottom_band.m pg. 73 

middle_left_band2.m pg. 74 

middle_right_band2.m pg. 75 

middle_top_band3.m pg. 76 

norim.m pg. 77 

pupil_morph2.m pg. 78 

right_edge_test.m pg. 79 

Segmentation_GUI.m pg. 80 

test_iris_edges2.m pg. 87 

top_edge_test.m pg. 88
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function z = add_iris_boundaryL(pupil_mask, iris_stats, top, bottom); 
 
%This function takes a pupil mask, iris statistics, top, and bottom of the 
%iris.  It then adds the elliplical shape of the iris to the logical pupil 
%mask for the left half of the iris. 
% 
% usage: add_iris_boundaryL(pupil_mask, iris_stats, top, bottom); 
% 
%where pupil_mask = logical array holding the pupil mask, iris_stats = 
%statistcs of the iris in a 1x1 structure, top = top boundary pixel of 
%iris, and bottom = bottom boundary pixel of iris. 
 
X0 = iris_stats.Centroid(1); 
y0 = iris_stats.Centroid(2); 
a = floor(iris_stats.MajorAxisLength / 2); 
b = floor(iris_stats.MinorAxisLength / 2); 
 
y = [top:1:bottom]; 
x1 = round(abs(sqrt((1-(y-y0).^2/b^2)*a^2) + x0)); 
 
point1 = [y; x1];  
 
for I = 1:length(y) 
    pupil_mask(point1(1, i), point1(2, i)) = 1; 
end 
 
z = pupil_mask; 
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function z = add_iris_boundaryR(pupil_mask, iris_stats, top, bottom); 
 
%This function takes a pupil mask, iris statistics, top, and bottom of the 
%iris.  It then adds the elliplical shape of the iris to the logical pupil 
%mask for the right half of the iris. 
% 
% usage: add_iris_boundaryR(pupil_mask, iris_stats, top, bottom); 
% 
%where pupil_mask = logical array holding the pupil mask, iris_stats = 
%statistcs of the iris in a 1x1 structure, top = top boundary pixel of 
%iris, and bottom = bottom boundary pixel of iris. 
 
X0 = iris_stats.Centroid(1); 
y0 = iris_stats.Centroid(2); 
a = floor(iris_stats.MajorAxisLength / 2); 
b = floor(iris_stats.MinorAxisLength / 2); 
 
y = [top:1:bottom]; 
x2 = round(-abs(sqrt((1-(y-y0).^2/b^2)*a^2)) + x0); 
 
point2 = [y; x2]; 
 
for I = 1:length(y) 
    pupil_mask(point2(1, i), point2(2, i)) = 1; 
end 
 
z = pupil_mask; 
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function z = add_pupil_boundaryL(pupil_mask, pupil_stats, top_edge, bottom_edge); 
 
%This function takes a pupil mask, pupil statistics, top, and bottom of the 
%pupil.  It then adds the elliplical shape of the iris to the logical pupil 
%mask for the left half of the pupil. 
% 
%usage: add_pupil_boundaryL(pupil_mask, pupil_stats, top_edge, bottom_edge) 
% 
%where pupil_mask = logical array holding the pupil mask, pupil_stats = 
%statistcs of the pupil in a 1x1 structure, top_edge = top boundary pixel  
%of the pupil, and bottom_edge = bottom boundary pixel of the pupil. 
 
X0 = pupil_stats.Centroid(1); 
y0 = pupil_stats.Centroid(2); 
a = floor(pupil_stats.MajorAxisLength / 2); 
b = floor(pupil_stats.MinorAxisLength / 2); 
 
y = [top_edge:1:bottom_edge]; 
x1 = round(abs(sqrt((1-(y-y0).^2/b^2)*a^2) + x0)); 
% x2 = round(-abs(sqrt((1-(y-y0).^2/b^2)*a^2)) + x0); 
 
% equations below are the equivalent functions to those above...not needed 
% x = [left:1:right]; 
% y1 = round(abs(sqrt((1-(x-x0).^2/a^2)*b^2) + y0)); 
% y2 = round(-abs(sqrt((1-(x-x0).^2/a^2)*b^2)) + y0); 
 
point1 = [y; x1]; %point2 = [y; x2]; 
 
pupil_mask = zeros(size(pupil_mask)); 
 
for I = 1:length(y) 
    pupil_mask(point1(1, i), point1(2, i)) = 1; 
    %pupil_mask(point2(1, i), point2(2, i)) = 1; 
end 
 
% figure, gimage(pupil_mask), title(‘Iris Boundary’); 
 
z = pupil_mask; 
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function z = add_pupil_boundaryR(pupil_mask, pupil_stats, top_edge, bottom_edge); 
 
%This function takes a pupil mask, pupil statistics, top, and bottom of the 
%pupil.  It then adds the elliplical shape of the iris to the logical pupil 
%mask for the right half of the pupil. 
% 
%usage: add_pupil_boundaryR(pupil_mask, pupil_stats, top_edge, bottom_edge) 
% 
%where pupil_mask = logical array holding the pupil mask, pupil_stats = 
%statistcs of the pupil in a 1x1 structure, top_edge = top boundary pixel  
%of the pupil, and bottom_edge = bottom boundary pixel of the pupil. 
 
X0 = pupil_stats.Centroid(1); 
y0 = pupil_stats.Centroid(2); 
a = floor(pupil_stats.MajorAxisLength / 2); 
b = floor(pupil_stats.MinorAxisLength / 2); 
 
y = [top_edge:1:bottom_edge]; 
%x1 = round(abs(sqrt((1-(y-y0).^2/b^2)*a^2) + x0)); 
x2 = round(-abs(sqrt((1-(y-y0).^2/b^2)*a^2)) + x0); 
 
% equations below are the equivalent functions to those above...not needed 
% x = [left:1:right]; 
% y1 = round(abs(sqrt((1-(x-x0).^2/a^2)*b^2) + y0)); 
% y2 = round(-abs(sqrt((1-(x-x0).^2/a^2)*b^2)) + y0); 
 
%point1 = [y; x1]; 
point2 = [y; x2]; 
 
%pupil_mask = zeros(size(pupil_mask)); 
 
for I = 1:length(y) 
    %pupil_mask(point1(1, i), point1(2, i)) = 1; 
    pupil_mask(point2(1, i), point2(2, i)) = 1; 
end 
 
% figure, gimage(pupil_mask), title(‘Iris Boundary’); 
 
z = pupil_mask; 
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function  bit0 = adjusted_bitzero(iris_image); 
 
%This function takes an iris image and returns the least significant bit 
%plane of that image. 
% 
%                usage: bit0 = adjusted_bitzero(iris_image) 
% 
%where iris_image is the image of the desired least significant bit plane. 
 
[col, row] = size(iris_image); 
 
adjusted_iris = norim(iris_image); 
 
for i=1:col 
    for j=1:row 
        if adjusted_iris(I,j) < 60 
            adjusted_iris(I,j) = 255; 
        elseif adjusted_iris(I,j) > 240 
            adjusted_iris(I,j) = 255; 
        end 
    end 
end 
 
bit0 = mod(double(adjusted_iris), 2); 
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function B = bottom_edge_test(b, v, b_e, old) 
 
%This function takes the current location of the bottom of the iris, the 
%vertical vector holding the thresholded iris data, the bottom edge of the 
%iris, and the former value of the bottom edge. It compares the next 
%potential iris edge to the current iris edge.  If the new value is within 
%the default distance (N=20 pixels), the old value is replaced with the 
%new. Otherwise, the old value is returned.  This function is used 
%recursively. 
% 
%   usage: B = bottom_edge_test(b, v, b_e, old) 
% 
%where b is the current location of the bottom of the iris, v is the 
%vertical vector holding the thresholded iris data, b_e is the bottom edge  
%of the pupil, and old is the former value of the bottom edge used for 
%comparison. 
 
B = b; N = 20; 
 
b_e_new = b; 
b_bound = v((b_e_new):length(v)); 
[B_new_front, B_new_back] = middle_bottom_band(b_bound, b_e_new); 
if B_new_front > B + N | B_new_front == old 
    B = b; 
else 
    B = B_new_back; 
    B = bottom_edge_test(B, v, b_e, B);     
End 
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function [L,R,T,B] = get_iris_edges(h_test, v_test, l_e, r_e, t_e, b_e) 
 
%This function takes the 1-D logical mask of the std deviations after they 
%have undergone morphology as well. It returns the initial L,R,T,B edges of 
%the IRIS.  The “test_iris_edges()” function later checks to ensure the 
%values returned are the correct edges of the IRIS. 
% 
% usage: [L, R, T, B] = get_iris_edges(h_test, v_test, l_e, r_e, t_e, b_e); 
% 
%where L,R,T,B are the pixel locations of the IRIS boundary such that  
%L = Left, R = Right, T = Top, B = Bottom.  H_test and v_test are the 1-D 
%logical arrays displaying the standard deviations are you progress N,S,E,W 
%from the center point of the iris.  L_e = left edge, r_e = right edge, 
%t_e = top edge, b_e = bottom edge of PUPIL boundary. 
 
N = 10; 
 
l_bound = h_test(1 : (l_e – n)); 
r_bound = h_test((r_e + n) : length(h_test)); 
t_bound = v_test(1 : (t_e – n)); 
b_bound = v_test((b_e + n) : length(v_test)); 
 
[L, temp] = middle_left_band2(l_bound); 
 
[R, temp] = middle_right_band2(r_bound, r_e); 
 
 
if find(t_bound == 1) 
    T = find(t_bound == 1); 
    T = T(length(T)); 
else 
    T = 1; 
end 
 
if find(b_bound == 1) 
    B = find(b_bound == 1); 
    B = B(1) + b_e + 15; 
else 
    B = 480; 
end 
 
if L < 1 
    L = 1; 
end 
if R > 640 
    R = 640; 
end 
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if T < 1 
    T = 1; 
end 
if B > 480 
    B = 480; 
end 
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function y = get_mask(eye) 
 
%This function takes an image of the eye in which the “ground truth” has 
%been determined in Adobe Photoshop. The iris consists of a grouping 
%of pixels with similar values equal to 255. This function returns a binary 
%mask of the iris mask that represent the location of the iris pixels 
% 
%       usage: y = get_mask(eye) 
% 
%where eye is the “ground truth” iris image. 
 
Eye_mask = zeros(480, 640); 
 
eye_mask( find(eye == 255) ) = 1; 
 
L = bwlabel(eye_mask); 
stats = regionprops(L, ‘Area’, ‘PixelList’); 
[A B] = size(stats); 
 
%%% FIND LARGEST BLOCK OF ONES! 
Largest = stats(1); 
for I = 2:A 
    if stats(i).Area > largest.Area 
        largest = stats(i); 
    end 
end 
 
blank = zeros(480, 640); 
for I = 1:length(largest.PixelList) 
    blank(largest.PixelList(I, 2), largest.PixelList(I, 1)) = 1; 
end 
 
y = blank; 
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function [L,R,T,B] = get_pupil_edges(pupil_mask, pupil_stats); 
 
%This function takes the logical pupil mask and the pupil center pixel. It 
%returns the L,R,T,B coordinates of the pupil edge. 
% 
% usage: [L, R, T, B] = get_pupil_edges(pupil_mask, pupil_center); 
% 
%where L,R,T,B are the pixel locations of the pupil boundary such that  
%L = Left Edge, R = Right Edge, T = Top Edge, B = Bottom Edge 
 
pupil_center = round(pupil_stats.Centroid); 
 
horizontal = find(pupil_mask(pupil_center(2),☺ == 1); 
 
L = horizontal(1); 
R = horizontal(length(horizontal)); 
 
vertical = find(pupil_mask(:,pupil_center(1)) == 1); 
 
T = vertical(1); 
B = vertical(length(vertical)); 
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function gimage(x) 
 
%This function displays an image using the grayscale colormap. 
% 
%    usage: gimage(x) 
% 
%where x is the image desired to be displayed in grayscale. 
 
%converts image values to doubles for math operations 
d = double(x); 
 
%normalizes image x for a range of [0,255] 
norim(d); 
 
%displays x 
colormap(gray(256)); 
image(round(d)); 
%imwrite(x, ‘image.jpeg’); 
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function [y, stats] = iris_segmentation(iris); 
 
%This function performs an iris segmentation using elliptical curves to 
%define the pupillary and limbic boundaries.  
% 
%   usage: y = iris_segmentation(iris) 
% 
%where iris is a 480 x 640 uint8 grayscale eye image.  
 
Bitplane_zero = adjusted_bitzero(iris); 
 
[pupil_mask, stats] = pupil_morph2(bitplane_zero); 
 
[y, stats] = limbic_boundary6(stats, pupil_mask, iris); 
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function L = left_edge_test(l, h, l_e, Lold) 
 
%This function takes the current location of the left of the iris, the 
%horizontal vector holding the thresholded iris data, the left edge of the 
%iris, and the former value of the left edge. It compares the next 
%potential iris edge to the current iris edge.  If the new value is within 
%the default distance (N=20 pixels), the old value is replaced with the 
%new. Otherwise, the old value is returned.  This function is used 
%recursively. 
% 
%   usage: L = left_edge_test(l, h, l_e, Lold) 
% 
%where l is the current location of the left side of the iris, h is the 
%horizontal vector holding the thresholded iris data, l_e is the left edge  
%of the pupil, and Lold is the former value of the left edge used for 
%comparison. 
 
L = l;N = 20; 
 
l_e_new = l; 
l_bound = h(1 : (l_e_new)); 
[L_new_front, L_new_back] = middle_left_band2(l_bound); 
 
if L_new_front < L – N | L_new_front == Lold 
    L = l; 
else 
    L = L_new_back; 
    L = left_edge_test(L, h, l_e, L); 
end 
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function [y, stats] = limbic_boundary6(pupil_stats, pupil_mask, iris_image); 
 
%This function takes the pupil statistics (include centroid, major and 
%minor axis), the logical binary pupil mask, and the original iris image. 
%The function returns a new binary mask which contains both the pupil mask 
%as well as the elliptical limbic boundary. 
% 
% usage: y = limbic_boundary6(pupil_stats, pupil_mask, iris_image) 
% 
%where pupil_stats is the 1x1 structure containing the pupil statistics, 
%pupil_mask is the binary mask of the location of the pupil boundary, and 
%iris_image is the image from which the iris pattern is being extracted. 
 
Pupil_center = round(pupil_stats.Centroid); 
[rows, cols] = size(pupil_mask); 
 
%plots each half of pupillary boundary separately 
[left_edge, right_edge, top_edge, bottom_edge] = get_pupil_edges(pupil_mask, pupil_stats); 
 
right_side = right_edge; 
fake_left_side = pupil_stats.Centroid(1) – (right_edge – pupil_stats.Centroid(1)); 
 
left_side = left_edge; 
fake_right_side = pupil_stats.Centroid(1) + (pupil_stats.Centroid(1) – left_edge); 
 
p_s1 = pupil_stats; 
p_s2 = pupil_stats; 
 
p_s1.MajorAxisLength = right_side – fake_left_side; 
p_s1.MinorAxisLength = bottom_edge – top_edge; 
 
p_s2.MajorAxisLength = fake_right_side – left_side; 
p_s2.MinorAxisLength = bottom_edge – top_edge; 
 
pupil_mask = add_pupil_boundaryL(pupil_mask, p_s1, top_edge, bottom_edge); 
pupil_mask = add_pupil_boundaryR(pupil_mask, p_s2, top_edge, bottom_edge); 
 
%mex localthresh.c 
thresh_image = ~localthresh(double(iris_image), 45, 4); 
thresh_image = bwmorph(thresh_image, ‘open’); 
 
v_test = thresh_image(:,pupil_center(1)); 
h_test = thresh_image(pupil_center(2),☺; 
 
%find iris edges 
[left, right, top, bottom] = get_iris_edges(h_test, v_test, left_edge, ... 
                                 right_edge, top_edge, bottom_edge); 
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%calculate new major and minor axis for iris (different than pupil) 
iris_stats = pupil_stats; 
iris_stats.MajorAxisLength = right – left; 
iris_stats.MinorAxisLength = bottom – top; 
iris_stats.Centroid = [floor((right – left)/2 + left) ...  
                       floor((bottom – top)/2 + top)]; 
 
% test to see if bounds are actual iris boundaries 
[left, right, top, bottom, iris_stats] = test_iris_edges2(left, right, ... 
    top, bottom, pupil_stats, iris_stats, h_test, v_test, left_edge, ... 
    right_edge, top_edge, bottom_edge); 
 
%% ADD ELLIPTICAL BOUNDARY %% 
right_side = right; 
fake_left_side = iris_stats.Centroid(1) – (right – iris_stats.Centroid(1)); 
 
left_side = left; 
fake_right_side = iris_stats.Centroid(1) + (iris_stats.Centroid(1) – left); 
 
i_s1 = iris_stats; 
i_s2 = iris_stats; 
 
i_s1.MajorAxisLength = right_side – fake_left_side; 
i_s1.MinorAxisLength = bottom – top; 
 
i_s2.MajorAxisLength = fake_right_side – left_side; 
i_s2.MinorAxisLength = bottom – top; 
 
iris_mask = zeros(rows, cols); 
iris_mask = add_iris_boundaryL(iris_mask, i_s1, top, bottom); 
iris_mask = add_iris_boundaryR(iris_mask, i_s2, top, bottom); 
 
%Rotate the mask to adjust to fit the tilt of the iris in the image 
orient = 90; 
 
if abs(pupil_stats.MajorAxisLength – pupil_stats.MinorAxisLength) > 7 
    orient = pupil_stats.Orientation; 
end 
 
left_bound = round(pupil_stats.Centroid(1) – pupil_stats.MajorAxisLength); 
right_bound = round(pupil_stats.Centroid(1) + pupil_stats.MajorAxisLength); 
top_bound = round(pupil_stats.Centroid(2) – pupil_stats.MajorAxisLength); 
bot_bound = round(pupil_stats.Centroid(2) + pupil_stats.MajorAxisLength); 
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%%ROTATES PUPIL MASK 
sub_mask = pupil_mask(top_bound:bot_bound, left_bound:right_bound); 
sub_mask = imrotate(sub_mask, -(90-orient), ‘nearest’, ‘crop’); 
pupil_mask = zeros(rows, cols); 
pupil_mask(top_bound:bot_bound, left_bound:right_bound) = sub_mask; 
 
iris_stats = pupil_stats; 
iris_stats.MajorAxisLength = right – left; 
iris_stats.MinorAxisLength = bottom – top; 
iris_stats.Centroid = [floor((right – left)/2 + left) ...  
                       floor((bottom – top)/2 + top)]; 
 
rotate_length = iris_stats.MinorAxisLength; 
if iris_stats.MajorAxisLength > rotate_length 
    rotate_length = iris_stats.MajorAxisLength; 
end 
                    
left_bound = round(iris_stats.Centroid(1) – rotate_length/2 – 5); 
right_bound = round(iris_stats.Centroid(1) + rotate_length/2 + 5); 
top_bound = round(iris_stats.Centroid(2) – rotate_length/2 – 5); 
bot_bound = round(iris_stats.Centroid(2) + rotate_length/2 + 5); 
 
if left_bound < 6 || right_bound > 634 || top_bound < 6 || bot_bound > 474 
    final_mask = pupil_mask + iris_mask; 
else 
    sub_mask2 = iris_mask(top_bound:bot_bound, left_bound:right_bound); 
    sub_mask2 = imrotate(sub_mask2, -(90-orient), ‘nearest’, ‘crop’); 
    iris_mask2 = zeros(rows, cols); 
    iris_mask2(top_bound:bot_bound, left_bound:right_bound) = sub_mask2; 
 
    final_mask = pupil_mask + iris_mask2; 
end 
 
y = final_mask; 
stats = p_s1; 
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function [ymean,ystd,yvar]=localstats2(x,nsize) 
% 
%   function [ymean,ystd,yvar]=localstats2(x,nsize) 
% 
%   This function takes in an input 2D array x and outputs two 2D arrays: 
%   the first is an array of the local means in nsize x nsize 
%   neighborhoods, and the second is the local std deviations. 
 
[r c]=size(x); 
ymean=zeros(size(x)); 
ystd=zeros(size(x)); 
yvar=zeros(size(x)); 
for i=1:r 
    for j=1:c 
        z=extract_ives(x,I,j,nsize); 
        ymean(I,j)=mean(z(☺); 
        ystd(I,j)=std(z(☺); 
        yvar(I,j)=var(z(☺); 
    end 
end 
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/* 
 * localstd.c – Computes the local standard deviation about each pixel in an nsize x nsize 
 *neighborhood. The nsize should be an odd number. 
 * 
 * MATLAB usage: y=localstd(x,nsize) 
 * 
 */ 
 
#include <math.h> 
#include “mex.h” 
 
#define ROUND(A) ((fabs(A)) >= ((int)A+0.5) ? ((int)A+1.0) : ((int)A))  /* this is the rounding 
operation for + ints */ 
#define MIN(A,B) (A) < (B) ? (A)/B) 
#define MAX(A,B) (A) > (B) ? (A)/B) 
 
void mexFunction(int nlhs, mxArray *plhs[],int nrhs, const mxArray *prhs[]) 
{ 
  int rows,cols,nsize; 
   
  int I,j,ii,jj,N,halfsize,index; 
  int rowstart,rowstop,colstart,colstop;  
 
  double D,*y,*yy,*n,*outArray; 
  double ave,sdev,s; 
  double *ptr; 
 
  if (mxIsDouble(prhs[0])) 
   
ptr=(double *)mxGetPr(prhs[0]);  
else 
mexErrMsgTxt(“Error: in function \”localstd\”, input matrix must be double.”); 
 
  /* Do some error checking */ 
  if (nrhs != 2) 
     mexErrMsgTxt(“Not enough input arguments.”); 
   else if (nlhs > 1) 
     mexErrMsgTxt(“Too many output arguments.”); 
 
 
  /* Create a matrix for the return argument */ 
  rows=mxGetN(prhs[0]);   /* note: because MATLAB is column ordered, interchange rows & 
cols */ 
  cols=mxGetM(prhs[0]); 
  nsize=mxGetScalar(prhs[1]); 
  if (floor(nsize/2)== (double)nsize/2) 
     mexErrMsgTxt(“Error: in function \”localstd\”, neighborhood size must be odd.”); 
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  N=nsize*nsize;  
/* # elements in the neighborhood */ 
  halfsize=(nsize-1)/2;  
 
/* # pixels on either side of a pixel, defines neighborhood */ 
 
  n = (double *) mxMalloc(N*sizeof(double)); 
  
/* create storage for output */ 
   
  /*y=mxMalloc(rows*cols*sizeof(double)); */ 
 
   plhs[0]=mxCreateDoubleMatrix(cols,rows,mxREAL);  
   y=mxGetPr(plhs[0]); 
 
  /*yy=mxCreateDoubleMatrix(rows,cols,mxREAL); 
  y=mxGetPr(yy);*/ 
  /* compute local standard deviation */ 
  for (i=0;i<rows;i++) 
  for (j=0;j<cols;j++) 
  { 
    
/*printf(“loop, [%d][%d]\n”,I,j);*/ 
    
index=0; 
    
rowstart=MAX(0,i-halfsize); 
    
rowstop=MIN(rows-1,i+halfsize); 
    
colstart=MAX(0,j-halfsize); 
    
colstop=MIN(cols-1,j+halfsize); 
    
/* 
    
printf(“here, rowstart=[%d], rowstop=[%d], colstart=[%d], 
colstop[%d]\n”,rowstart,rowstop,colstart,colstop); 
    
*/ 
    
for (ii=rowstart;ii<=rowstop;ii++) 
         
for (jj=colstart;jj<=colstop;jj++) 
   
n[index++]=ptr[ii*cols+jj]; 
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          ave=sdev=0.0; 
          for (ii=0;ii<index;ii++)  
ave += n[ii]; 
    
ave /= index; 
          for (ii=0;ii<index;ii++)  
{ 
s=n[ii]-ave; 
    
sdev += s*s; 
} 
    
sdev /= (index-1); 
sdev=sqrt(sdev); 
       
y[i*cols+j]=sdev; 
    
/* 
  printf(“y[%d][%d] = ? y[%d]\n”,I,j,i*cols+j); 
*/ 
  } 
/* 
plhs[0]=mxCreateDoubleMatrix(rows,cols,mxREAL);     
outArray = mxGetPr(plhs[0]); 
memcpy(outArray,y,rows*cols*sizeof(double)); 
mxFree(n); 
*/ 
} 
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/* 
 * localthresh.c – Thresholds an image based on a local mean about each pixel in an nsize x nsize 
 *neighborhood. The nsize should be an odd number. C is a constant. 
 *T = localmean – C 
 * MATLAB usage: y=localthresh(x,nsize,C) 
 * 
 * 
 *Written by Robert Ives, US Naval Academy, 21 Oct 04 
 */ 
 
#include <math.h> 
#include “mex.h” 
 
#define ROUND(A) ((fabs(A)) >= ((int)A+0.5) ? ((int)A+1.0) : ((int)A))  /* this is the rounding 
operation for + ints */ 
#define MIN(A,B) (A) < (B) ? (A)/B) 
#define MAX(A,B) (A) > (B) ? (A)/B) 
 
void mexFunction(int nlhs, mxArray *plhs[],int nrhs, const mxArray *prhs[]) 
{ 
  int rows,cols,nsize; 
   
  int I,j,ii,jj,N,halfsize,index; 
  int rowstart,rowstop,colstart,colstop;  
 
  double D,*y,*yy,*n,*outArray; 
  double ave,s,C,T; 
  double *ptr; 
 
  if (mxIsDouble(prhs[0])) 
   
ptr=(double *)mxGetPr(prhs[0]);  
else 
mexErrMsgTxt(“Error: in function \”localstd\”, input matrix must be double.”); 
 
  /* Do some error checking */ 
  if (nrhs != 3) 
     mexErrMsgTxt(“Not enough input arguments.”); 
   else if (nlhs > 1) 
     mexErrMsgTxt(“Too many output arguments.”); 
 
  /* Create a matrix for the return argument */ 
  rows=mxGetN(prhs[0]);   /* note: because MATLAB is column ordered, interchange rows & 
cols */ 
  cols=mxGetM(prhs[0]); 
  nsize=mxGetScalar(prhs[1]); 
  C=mxGetScalar(prhs[2]); 
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  if (floor(nsize/2)== (double)nsize/2) 
     mexErrMsgTxt(“Error: in function \”localstd\”, neighborhood size must be odd.”); 
 
  N=nsize*nsize;  
 
/* # elements in the neighborhood */ 
  halfsize=(nsize-1)/2;  
  
/* # pixels on either side of a pixel, defines neighborhood */ 
 
  n = (double *) mxMalloc(N*sizeof(double)); 
 /* create storage for output */ 
   
  /*y=mxMalloc(rows*cols*sizeof(double)); */ 
 
   plhs[0]=mxCreateDoubleMatrix(cols,rows,mxREAL);  
   y=mxGetPr(plhs[0]); 
 
  /*yy=mxCreateDoubleMatrix(rows,cols,mxREAL); 
  y=mxGetPr(yy);*/ 
  /* compute local standard deviation */ 
  for (i=0;i<rows;i++) 
   for 
(j=0;j<cols;j++) 
  { 
   
/*printf(“loop, [%d][%d]\n”,I,j);*/ 
    
index=0; 
    
rowstart=MAX(0,i-halfsize); 
    
rowstop=MIN(rows-1,i+halfsize); 
    
colstart=MAX(0,j-halfsize); 
    
colstop=MIN(cols-1,j+halfsize); 
    
    
for (ii=rowstart;ii<=rowstop;ii++) 
    
for (jj=colstart;jj<=colstop;jj++) 
n[index++]=ptr[ii*cols+jj]; 
 
          ave=0.0; 
          for (ii=0;ii<index;ii++)  
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ave += n[ii]; 
    
ave /= index; 
          y[i*cols+j]=0; 
    
T=ave-C; 
    
if (ptr[i*cols+j] > T) 
 y[i*cols+j]=1; 
   } 
 
/* 
plhs[0]=mxCreateDoubleMatrix(rows,cols,mxREAL);     
outArray = mxGetPr(plhs[0]); 
memcpy(outArray,y,rows*cols*sizeof(double)); 
mxFree(n); 
*/ 
 
} 
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function [first, last] = middle_bottom_band(b_bound, bottom_edge) 
 
%This function takes a vertical vector with the thresholded iris data and  
%returns the first and last location of the next band of ‘ones’. 
% 
%   usage: [first, last] = middle_bottom_band(b_bound, bottom_edge) 
% 
%where b_bound is the logical array beneath the iris and extending to the  
%end of the image, and bottom_edge is the next potential end of the band of 
%’ones’. It is a one dimensional array that is focused about the center  
%pixel of the iris. 
 
Counter = 0; 
 
if sum(b_bound(☺) == 0 
    first = bottom_edge; 
    last = bottom_edge; 
    return; 
end 
 
while b_bound(1) ~= 1 
    b_bound = b_bound(2:length(b_bound)); 
    counter = counter + 1; 
end 
 
first = bottom_edge + counter; 
 
while b_bound(1) == 1 && length(b_bound) >= 2 
    b_bound = b_bound(2:length(b_bound)); 
    counter = counter + 1; 
end 
 
if sum(b_bound(☺) == 0 || length(b_bound) == 1 
    last = bottom_edge + counter; 
    return; 
end 
 
last = bottom_edge + counter; 
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function [first, last] = middle_left_band2(l_bound); 
 
%This function takes a horizontal vector with the thresholded iris data and  
%returns the first and last location of the next band of ‘ones’. 
% 
%   usage: [first, last] = middle_left_band2(l_bound) 
% 
%where l_bound is the logical array beneath the iris and extending to the  
%end of the image. It is a one dimensional array that is focused about the  
%center pixel of the iris. 
 
Left_edge = length(l_bound); 
 
if sum(l_bound(☺) == 0 
    first = left_edge; 
    last = left_edge; 
    return; 
end 
 
while l_bound(length(l_bound)) ~= 1 
    l_bound = l_bound(1:length(l_bound)-1); 
end 
 
first = length(l_bound); 
 
while l_bound(length(l_bound)) == 1 && length(l_bound) >= 2 
    l_bound = l_bound(1:length(l_bound)-1); 
end 
 
if sum(l_bound(☺) == 0 || length(l_bound) == 1 
    last = length(l_bound); 
    return; 
end 
 
last =length(l_bound); 
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function [first, last] = middle_right_band2(r_bound, right_edge) 
 
%This function takes a horizontal vector with the thresholded iris data and  
%returns the first and last location of the next band of ‘ones’. 
% 
%   usage: [first, last] = middle_right_band2(r_bound, right_edge) 
% 
%where r_bound is the logical array beneath the iris and extending to the  
%end of the image and right_edge is the next potential edge of the band of  
%’ones’. It is a one dimensional array that is focused about the center  
%pixel of the iris. 
 
Counter = 0; 
 
if sum(r_bound(☺) == 0 
    first = right_edge; 
    last = right_edge; 
    return; 
end 
 
while r_bound(1) ~= 1 
    r_bound = r_bound(2:length(r_bound)); 
    counter = counter + 1; 
end 
 
first = right_edge + counter; 
 
while r_bound(1) == 1 && length(r_bound) >= 2 
    r_bound = r_bound(2:length(r_bound)); 
    counter = counter + 1; 
end 
 
if sum(r_bound(☺) == 0 || length(r_bound) == 1 
    last = right_edge + counter; 
    return; 
end 
 
last = right_edge + counter; 



 

 

76
function [first, last] = middle_top_band3(t_bound); 
 
%This function takes a vertical vector with the thresholded iris data and  
%returns the first and last location of the next band of ‘ones’. 
% 
%   usage: [first, last] = middle_top_band3(t_bound) 
% 
%where b_bound is the logical array beneath the iris and extending to the  
%end of the image. It is a one dimensional array that is focused about the 
%center pixel of the iris. 
 
 
Top_edge = length(t_bound); 
 
if sum(t_bound(☺) == 0 
    first = top_edge; 
    last = top_edge; 
    return; 
end 
 
while t_bound(length(t_bound)) ~= 1 
    t_bound = t_bound(1:length(t_bound)-1); 
end 
 
first = length(t_bound); 
 
while t_bound(length(t_bound)) == 1 && length(t_bound) >= 2 
    t_bound = t_bound(1:length(t_bound)-1); 
end 
 
if sum(t_bound(☺) == 0 || length(t_bound) == 1 
    last = length(t_bound); 
    return; 
end 
 
last =length(t_bound); 
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function y = norim(x) 
 
%This function normalizes an image to integer values in the range [0,255]. 
% 
%       usage: y = norim(x) 
% 
%where x is the image desired to be normalized. 
 
D = double(x); 
 
%Divide the array by the largest value in the array 
y = d – min(d(☺); 
y = y/max(y(☺); 
 
%Multiply array y by 255 to put on [0,255] range 
y = uint8(y*255); 
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function [y, largest] = pupil_morph2(bitplane_iris); 
 
%This function performs the necessary morphological operations of a given 
%least significant iris bit plane, and it returns the logical pupil mask 
%for that image. 
% 
% usage: [y, largest] = pupil_morph2(bitplane_iris) 
% 
%where bitplane_iris is the least significant bit plane of the iris image. 
%The iris image should have been fed through the ‘adjusted_bitzero()’ 
%function prior to use for proper results.  The image must be a 640x480 
%iris image. 
 
Bw1 = bitplane_iris;          
[cols, rows] = size(bw1); 
 
bw_pupil = zeros(cols, rows); 
 
for I = 125:355               %isolation used to reduce high values caused 
    for j = 150:490           %by lighting – focus on pupil area 
        bw_pupil(I,j) = bw1(I,j); 
    end 
end 
 
%initial erosion and dilation to remove specularities 
bw_pupil = bwmorph(bw_pupil, ‘open’); 
 
L = bwlabel(bw_pupil); 
stats = regionprops(L, ‘Centroid’, ‘MajorAxisLength’, ‘MinorAxisLength’, ‘Area’, ‘PixelList’, 
‘Orientation’); 
[A B] = size(stats); 
 
%%% FIND LARGEST BLOCK OF ONES! 
Largest = stats(1); 
for I = 2:A 
    if stats(i).Area > largest.Area 
        largest = stats(i); 
    end 
end 
 
blank = zeros(cols, rows); 
for I = 1:length(largest.PixelList) 
    blank(largest.PixelList(I, 2), largest.PixelList(I, 1)) = 1; 
end 
 
y = blank; 



 

 

79
function R = right_edge_test(r, h, r_e, old) 
 
%This function takes the current location of the right of the iris, the 
%horizontal vector holding the thresholded iris data, the right edge of the 
%iris, and the former value of the right edge. It compares the next 
%potential iris edge to the current iris edge.  If the new value is within 
%the default distance (N=20 pixels), the old value is replaced with the 
%new. Otherwise, the old value is returned.  This function is used 
%recursively. 
% 
%   usage: R = left_edge_test(r, h, r_e, old) 
% 
%where r is the current location of the right side of the iris, h is the 
%horizontal vector holding the thresholded iris data, r_e is the right edge  
%of the pupil, and old is the former value of the right edge used for 
%comparison. 
 
R = r; N = 20; 
 
r_e_new = r; 
r_bound = h((r_e_new) : length(h)); 
[R_new_front, R_new_back] = middle_right_band2(r_bound, r_e_new); 
 
if R_new_front > R + N | R_new_front == old 
    R = r; 
else 
    R = R_new_back; 
    R = right_edge_test(R, h, r_e, R); 
end 
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function varargout = Segmentation_GUI(varargin) 
 
% SEGMENTATION_GUI M-file for Segmentation_GUI.fig 
%      SEGMENTATION_GUI, by itself, creates a new SEGMENTATION_GUI or raises the  
%      existing singleton*. 
% 
%      H = SEGMENTATION_GUI returns the handle to a new SEGMENTATION_GUI or the  
%      handle to the existing singleton*. 
% 
%      SEGMENTATION_GUI(‘CALLBACK’,hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in SEGMENTATION_GUI.M with the given input  
%      arguments. 
% 
%      SEGMENTATION_GUI(‘Property’,’Value’,...) creates a new SEGMENTATION_GUI or  
%      raises the existing singleton*.  Starting from the left, property value pairs are 
%      applied to the GUI before Segmentation_GUI_OpeningFunction gets called.  An 
%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to Segmentation_GUI_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE’s Tools menu.  Choose “GUI allows only one 
%      instance to run (singleton)”. 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
 
% Copyright 2002-2003 The MathWorks, Inc. 
 
% Edit the above text to modify the response to help Segmentation_GUI 
 
% Last Modified by GUIDE v2.5 17-Feb-2005 14:16:53 
 
% Begin initialization code – written by The MathWorks, Inc. – DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct(‘gui_Name’,       mfilename, ... 
                   ‘gui_Singleton’,  gui_Singleton, ... 
                   ‘gui_OpeningFcn’, @Segmentation_GUI_OpeningFcn, ... 
                   ‘gui_OutputFcn’,  @Segmentation_GUI_OutputFcn, ... 
                   ‘gui_LayoutFcn’,  [] , ... 
                   ‘gui_Callback’,   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code – DO NOT EDIT 
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% --- Executes just before Segmentation_GUI is made visible. 
Function Segmentation_GUI_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved – to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to Segmentation_GUI (see VARARGIN) 
 
% Choose default command line output for Segmentation_GUI 
handles.output = hObject; 
 
% Update handles structure 
guidata(hObject, handles); 
 
% UIWAIT makes Segmentation_GUI wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
 
%Turn off initial axes1 and axes2 for GUI execution 
set(handles.axes1, ‘HandleVisibility’, ‘ON’); 
axes(handles.axes1); 
axis off; 
title(‘ ‘); 
set(handles.axes1, ‘HandleVisibility’, ‘OFF’); 
 
set(handles.axes2, ‘HandleVisibility’, ‘ON’); 
axes(handles.axes2); 
axis off; 
title(‘ ‘); 
set(handles.axes2, ‘HandleVisibility’, ‘OFF’); 
 
set(handles.text4, ‘String’, ‘ ‘); 
set(handles.numtruepixel, ‘String’, ‘ ‘); 
set(handles.text6, ‘String’, ‘ ‘); 
set(handles.nummaskpixel, ‘String’, ‘ ‘); 
set(handles.text10, ‘String’, ‘ ‘); 
set(handles.lowqual, ‘String’, ‘ ‘); 
set(handles.text12, ‘String’, ‘ ‘); 
set(handles.upperqual, ‘String’, ‘ ‘); 
set(handles.text15, ‘String’, ‘ ‘); 
set(handles.text18, ‘String’, ‘ ‘); 
set(handles.topqual, ‘String’, ‘ ‘); 
set(handles.text16, ‘String’, ‘ ‘); 
set(handles.numcommonpixel, ‘String’, ‘ ‘); 
 
mex localthresh.c 
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% --- Outputs from this function are returned to the command line. 
Function varargout = Segmentation_GUI_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved – to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Get default command line output from handles structure 
varargout{1} = handles.output; 
 
 
% --- Executes on button press in loadraw. 
Function loadraw_Callback(hObject, eventdata, handles) 
% hObject    handle to loadraw (see GCBO) 
% eventdata  reserved – to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
set(handles.text4, ‘String’, ‘ ‘); 
set(handles.numtruepixel, ‘String’, ‘ ‘); 
set(handles.text6, ‘String’, ‘ ‘); 
set(handles.nummaskpixel, ‘String’, ‘ ‘); 
set(handles.text10, ‘String’, ‘ ‘); 
set(handles.lowqual, ‘String’, ‘ ‘); 
set(handles.text12, ‘String’, ‘ ‘); 
set(handles.upperqual, ‘String’, ‘ ‘); 
set(handles.text15, ‘String’, ‘ ‘); 
set(handles.text18, ‘String’, ‘ ‘); 
set(handles.topqual, ‘String’, ‘ ‘); 
set(handles.text16, ‘String’, ‘ ‘); 
set(handles.numcommonpixel, ‘String’, ‘ ‘); 
 
global iris_image; 
filename = get(handles.filename, ‘String’); 
 
iris_image = imread(filename); 
 
set(handles.axes1, ‘HandleVisibility’, ‘ON’); 
axes(handles.axes1); 
gimage(norim(iris_image)), axis image; 
axis off; 
set(handles.axes1, ‘HandleVisibility’, ‘OFF’); 
 
global truth_mask; 
global iris_image; 
 
truth_mask = get_mask(iris_image); 
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% --- Executes on button press in segment. 
Function segment_Callback(hObject, eventdata, handles) 
% hObject    handle to segment (see GCBO) 
% eventdata  reserved – to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
global iris_image2; 
global iris_mask; 
global stats; 
 
set(handles.text4, ‘String’, ‘ ‘); 
set(handles.numtruepixel, ‘String’, ‘ ‘); 
set(handles.text6, ‘String’, ‘ ‘); 
set(handles.nummaskpixel, ‘String’, ‘ ‘); 
set(handles.text10, ‘String’, ‘ ‘); 
set(handles.lowqual, ‘String’, ‘ ‘); 
set(handles.text12, ‘String’, ‘ ‘); 
set(handles.upperqual, ‘String’, ‘ ‘); 
set(handles.text15, ‘String’, ‘ ‘); 
set(handles.text18, ‘String’, ‘ ‘); 
set(handles.topqual, ‘String’, ‘ ‘); 
set(handles.text16, ‘String’, ‘ ‘); 
set(handles.numcommonpixel, ‘String’, ‘ ‘); 
 
set(handles.text15, ‘String’, ‘Segmenting...’); 
pause(0.01); 
 
[iris_mask, stats] = iris_segmentation(iris_image2); 
 
set(handles.axes2, ‘HandleVisibility’, ‘ON’); 
axes(handles.axes2); 
temp = uint8(bwmorph(iris_mask, ‘dilate’, 1)); 
gimage(norim(norim(uint8(temp)) + iris_image2)), axis image; 
axis off; 
set(handles.axes2, ‘HandleVisibility’, ‘OFF’); 
 
set(handles.text15, ‘String’, ‘ ‘); 
 
% --- Executes on button press in Reset. 
Function Reset_Callback(hObject, eventdata, handles) 
% hObject    handle to Reset (see GCBO) 
% eventdata  reserved – to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
set(handles.axes1, ‘HandleVisibility’, ‘ON’); 
axes(handles.axes1); 
cla reset; 
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axis off; 
title(‘ ‘); 
set(handles.axes1, ‘HandleVisibility’, ‘OFF’); 
 
set(handles.axes2, ‘HandleVisibility’, ‘ON’); 
axes(handles.axes2); 
cla reset; 
axis off; 
title(‘ ‘); 
set(handles.axes2, ‘HandleVisibility’, ‘OFF’); 
 
set(handles.text4, ‘String’, ‘ ‘); 
set(handles.numtruepixel, ‘String’, ‘ ‘); 
set(handles.text6, ‘String’, ‘ ‘); 
set(handles.nummaskpixel, ‘String’, ‘ ‘); 
set(handles.text10, ‘String’, ‘ ‘); 
set(handles.lowqual, ‘String’, ‘ ‘); 
set(handles.text12, ‘String’, ‘ ‘); 
set(handles.upperqual, ‘String’, ‘ ‘); 
set(handles.text15, ‘String’, ‘ ‘); 
set(handles.text18, ‘String’, ‘ ‘); 
set(handles.topqual, ‘String’, ‘ ‘); 
set(handles.text16, ‘String’, ‘ ‘); 
set(handles.numcommonpixel, ‘String’, ‘ ‘); 
 
% --- Executes during object creation, after setting all properties. 
Function filename_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to filename (see GCBO) 
% eventdata  reserved – to be defined in a future version of MATLAB 
% handles    empty – handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
If ispc 
    set(hObject,’BackgroundColor’,’white’); 
else 
    set(hObject,’BackgroundColor’,get(0,’defaultUicontrolBackgroundColor’)); 
end 
 
% --- Executes on button press in calculate. 
Function calculate_Callback(hObject, eventdata, handles) 
% hObject    handle to calculate (see GCBO) 
% eventdata  reserved – to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
global iris_image; 
global iris_image2; 
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global truth_mask; 
global iris_mask; 
global stats; 
 
%fill mask 
n = 4; 
temp_mask = ones(480, 640); 
while sum(~temp_mask(☺) == 0 
    temp_mask = bwmorph(iris_mask, ‘dilate’, n);  
    temp_mask = imfill(temp_mask, [1 1]); 
    location = round([stats.Centroid(2) stats.Centroid(1)]); 
    temp_mask = imfill(temp_mask, location); 
    n = n + 1; 
end 
 
iris_mask = ~temp_mask; 
iris_mask = bwmorph(iris_mask, ‘dilate’, n-2); 
 
set(handles.axes2, ‘HandleVisibility’, ‘ON’); 
axes(handles.axes2); 
gimage(norim(norim(uint8(iris_mask)) + iris_image2)), axis image; 
axis off; 
set(handles.axes2, ‘HandleVisibility’, ‘OFF’); 
 
%% 
combo = truth_mask & iris_mask; 
num_common_pixels = sum(combo(☺); 
num_true_pixels = sum(truth_mask(☺); 
num_mask_pixels = sum(iris_mask(☺); 
num_error_pixels = num_mask_pixels – num_common_pixels; 
if num_error_pixels < 0 
    num_error_pixels = 0; 
end 
 
low = (num_common_pixels – 0.1 * num_error_pixels) / num_true_pixels; 
mid = (num_common_pixels – 0.4 * num_error_pixels) / num_true_pixels;; 
top = (num_common_pixels – 0.7 * num_error_pixels) / num_true_pixels;; 
 
set(handles.text4, ‘String’, ‘Number of True Iris Pixels:’); 
set(handles.numtruepixel, ‘String’, num_true_pixels); 
set(handles.text6, ‘String’, ‘Number of Mask Iris Pixels:’); 
set(handles.nummaskpixel, ‘String’, num_mask_pixels); 
set(handles.text10, ‘String’, ‘10% Quality Bound:’); 
set(handles.lowqual, ‘String’, low); 
set(handles.text12, ‘String’, ‘40% Quality Bound:’); 
set(handles.upperqual, ‘String’, mid); 
set(handles.text18, ‘String’, ‘70% Quality Bound:’); 
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set(handles.topqual, ‘String’, top); 
set(handles.text16, ‘String’, ‘Number of Common Pixels:’); 
set(handles.numcommonpixel, ‘String’, num_common_pixels); 
 
 
% --- Executes on button press in loadiris2. 
Function loadiris2_Callback(hObject, eventdata, handles) 
% hObject    handle to loadiris2 (see GCBO) 
% eventdata  reserved – to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
set(handles.text4, ‘String’, ‘ ‘); 
set(handles.numtruepixel, ‘String’, ‘ ‘); 
set(handles.text6, ‘String’, ‘ ‘); 
set(handles.nummaskpixel, ‘String’, ‘ ‘); 
set(handles.text10, ‘String’, ‘ ‘); 
set(handles.lowqual, ‘String’, ‘ ‘); 
set(handles.text12, ‘String’, ‘ ‘); 
set(handles.upperqual, ‘String’, ‘ ‘); 
set(handles.text15, ‘String’, ‘ ‘); 
set(handles.text18, ‘String’, ‘ ‘); 
set(handles.topqual, ‘String’, ‘ ‘); 
set(handles.text16, ‘String’, ‘ ‘); 
set(handles.numcommonpixel, ‘String’, ‘ ‘); 
 
global iris_image2; 
 
filename2 = get(handles.edit2, ‘String’); 
iris_image2 = imread(filename2); 
 
set(handles.axes2, ‘HandleVisibility’, ‘ON’); 
axes(handles.axes2); 
gimage(norim(iris_image2)), axis image; 
axis off; 
set(handles.axes2, ‘HandleVisibility’, ‘OFF’); 
 
% --- Executes during object creation, after setting all properties. 
Function edit2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit2 (see GCBO) 
% eventdata  reserved – to be defined in a future version of MATLAB 
% handles    empty – handles not created until after all CreateFcns called 
 
if ispc 
    set(hObject,’BackgroundColor’,’white’); 
else 
    set(hObject,’BackgroundColor’,get(0,’defaultUicontrolBackgroundColor’)); 
end 
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function [L,R,T,B,I] = test_iris_edges2(l, r, t, b, p_stats, i_stats, h,... 
                                        v, l_e, r_e, t_e, b_e) 
 
%This function tests for and returns the limbic boundaries of the iris 
%given initial starting conditions. 
% 
% usage: [L,R,T,B,I] = test_iris_edges2(l, r, t, b, p_stats, i_stats, h,... 
%                                       v, l_e, r_e, t_e, b_e) 
% 
%where l is the initial left edge, r is the initial right edge, t is the 
%initial top edge, and b is the initial bottom edge of the iris.  P_stats 
%and i_stats are the 1x1 structs that contain the statistics for the pupil 
%and iris respectively. H is the horizontally thresholded iris data vector 
%and v is the vertically thresholded iris data vector. L_e is the left edge 
%of the pupil, r_e is the right edge of the pupil, t_e is the top edge of 
%the pupil, and b_e is the bottom edge of the pupil. 
                                         
L = left_edge_test(l, h, l_e, 0); 
 
R = right_edge_test(r, h, r_e, 0); 
 
T = top_edge_test(t, v, t_e, 0); 
 
B = bottom_edge_test(b, v, b_e, 0); 
 
 
I = i_stats; 
I.MajorAxisLength = R – L; 
I.MinorAxisLength = B – T; 
I.Centroid = [floor((R – L)/2 + L) floor((B – T)/2 + T)]; 
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function T = top_edge_test(t, v, t_e, old) 
 
%This function takes the current location of the top of the iris, the 
%vertical vector holding the thresholded iris data, the top edge of the 
%iris, and the former value of the top edge. It compares the next 
%potential iris edge to the current iris edge.  If the new value is within 
%the default distance (N=20 pixels), the old value is replaced with the 
%new. Otherwise, the old value is returned.  This function is used 
%recursively. 
% 
%   usage: T = top_edge_test(t, v, t_e, old) 
% 
%where t is the current location of the top of the iris, v is the 
%vertical vector holding the thresholded iris data, t_e is the top edge  
%of the pupil, and old is the former value of the top edge used for 
%comparison. 
 
T = t; N = 20; 
 
t_e_new = t; 
t_bound = v(1 : (t_e_new)); 
[T_new_front, T_new_back] = middle_top_band3(t_bound); 
if T_new_front < T – N | T_new_front == old 
    T = t; 
else 
    T = T_new_back; 
    T = top_edge_test(T, v, t_e, T);   
end 
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Appendix B: Experimental Data 
 

iris 
index:   

10% 
Bound 

40% 
Bound 

70% 
Bound   Variation 

1   0.9725 0.9371 0.9018   0.0354 
2   0.9302 0.8776 0.8251   0.0526 
3   0.9545 0.9309 0.9074   0.0236 
4   0.7064 0.7033 0.7002   0.0031 
5   0.9187 0.9046 0.8904   0.0142 
6   0.9340 0.9326 0.9312   0.0014 
7   0.9568 0.9033 0.8498   0.0535 
8   0.8626 0.8170 0.7713   0.0457 
9   0.9701 0.9123 0.8544   0.0579 

10   0.9073 0.8649 0.8226   0.0424 
11   0.9505 0.8676 0.7846   0.0830 
12   0.8887 0.8295 0.7702   0.0593 
13   0.8443 0.8434 0.8425   0.0009 
14   0.8653 0.7283 0.5913   0.1370 
15   0.9544 0.9123 0.8701   0.0422 
16   0.9322 0.8913 0.8504   0.0409 
17   0.8570 0.6818 0.5065   0.1753 
18   0.8895 0.6577 0.4258   0.2319 
19   0.9151 0.9124 0.9098   0.0026 
20   0.5022 0.4977 0.4933   0.0044 
21   0.9339 0.8940 0.8541   0.0399 
22   0.9496 0.9349 0.9202   0.0147 
23   0.9406 0.9099 0.8792   0.0307 
24   0.8948 0.7730 0.6512   0.1218 
25   0.8993 0.8709 0.8425   0.0284 
26   FS FS FS   FS 
27   FS FS FS   FS 
28   0.7113 0.7074 0.7035   0.0039 
29   0.6368 0.6180 0.5991   0.0189 
30   0.9121 0.9017 0.8913   0.0104 
31   0.7585 0.7515 0.7446   0.0069 
32   0.8829 0.7362 0.5896   0.1467 
33   0.9489 0.9454 0.9418   0.0036 
34   0.9401 0.8943 0.8484   0.0459 
35   0.9466 0.8384 0.7302   0.1082 
36   0.9357 0.9201 0.9045   0.0156 
37   0.9470 0.9078 0.8687   0.0392 
38   0.7222 0.6440 0.5657   0.0783 
39   0.6997 0.6667 0.6337   0.0330 
40   0.8615 0.8138 0.7661   0.0477 
41   0.9476 0.9391 0.9306   0.0085 
42   0.6194 0.6181 0.6169   0.0012 
43   0.8993 0.8374 0.7755   0.0619 
44   0.9517 0.8610 0.7702   0.0908 
45   0.8580 0.7164 0.5748   0.1416 
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46   0.6760 0.6427 0.6093   0.0334 
47   0.9514 0.9395 0.9277   0.0119 
48   0.9684 0.9589 0.9494   0.0095 
49   0.7860 0.6244 0.4628   0.1616 
50   0.8498 0.6964 0.5431   0.1534 
51   0.6311 0.5598 0.4885   0.0713 
52   0.9152 0.9145 0.9138   0.0007 
53   0.9265 0.9245 0.9224   0.0021 
54   FS FS FS   FS 
55   0.9599 0.8817 0.8035   0.0782 
56   0.9525 0.9161 0.8797   0.0364 
57   0.9067 0.9054 0.9042   0.0012 
58   0.9376 0.8793 0.8210   0.0583 
59   0.9394 0.9243 0.9092   0.0151 
60   0.8848 0.8838 0.8827   0.0011 
61   0.7726 0.6691 0.5655   0.1036 
62   0.8869 0.8814 0.8759   0.0055 
63   0.9268 0.9228 0.9187   0.0041 
64   0.9371 0.9361 0.9350   0.0011 
65   0.9723 0.9343 0.8963   0.0380 
66   0.8723 0.7351 0.5979   0.1372 
67   0.9045 0.8202 0.7360   0.0843 
68   0.5846 0.5830 0.5814   0.0016 
69   0.9288 0.7928 0.6568   0.1360 
70   0.9530 0.8597 0.7663   0.0934 
71   0.9348 0.8592 0.7835   0.0757 
72   0.7520 0.7439 0.7359   0.0081 
73   0.9459 0.8772 0.8084   0.0688 
74   0.7449 0.7217 0.6985   0.0232 
75   0.9157 0.8392 0.7628   0.0765 
76   0.9101 0.9046 0.8991   0.0055 
77   0.9127 0.8407 0.7687   0.0720 
78   0.7180 0.7082 0.6983   0.0098 
79   0.9432 0.9038 0.8645   0.0394 
80   FS FS FS   FS 
81   0.8833 0.8770 0.8706   0.0063 
82   0.6833 0.6753 0.6673   0.0080 
83   0.9416 0.8558 0.7699   0.0859 
84   0.9285 0.8883 0.8480   0.0403 
85   0.8879 0.7553 0.6227   0.1326 
86   0.9497 0.9391 0.9285   0.0106 
87   0.9244 0.8561 0.7878   0.0683 
88   0.7724 0.7524 0.7323   0.0201 
89   0.7098 0.7068 0.7039   0.0030 
90   0.6652 0.6386 0.6119   0.0267 
91   0.9659 0.9543 0.9427   0.0116 
92   0.9515 0.9438 0.9361   0.0077 
93   0.9496 0.9420 0.9344   0.0076 
94   0.9312 0.8485 0.7658   0.0827 
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95   0.9668 0.9605 0.9542   0.0063 
96   0.9236 0.9187 0.9138   0.0049 
97   0.9476 0.9416 0.9356   0.0060 
98   FS FS FS   FS 
99   0.4879 0.4446 0.4014   0.0433 

100   0.8874 0.7193 0.5512   0.1681 
101   0.9507 0.9225 0.8944   0.0282 
102   0.4753 0.4251 0.3749   0.0502 
103   0.5367 0.5325 0.5283   0.0042 
104   0.9426 0.9022 0.8618   0.0404 
105   FS FS FS   FS 
106   0.9206 0.8978 0.8749   0.0229 
107   0.9695 0.9187 0.8679   0.0508 
108   0.9028 0.8720 0.8413   0.0308 
109   0.8437 0.8380 0.8322   0.0057 
110   0.9376 0.9368 0.9359   0.0009 
111   0.9255 0.9245 0.9234   0.0011 
112   0.9648 0.9392 0.9137   0.0256 
113   0.9570 0.9167 0.8768   0.0401 
114   0.7569 0.7210 0.6852   0.0359 
115   0.9420 0.9351 0.9281   0.0069 
116   0.9245 0.9197 0.9149   0.0048 
117   0.9564 0.9516 0.9469   0.0048 
118   0.8931 0.8853 0.8775   0.0078 
119   0.8779 0.8735 0.8692   0.0044 
120   0.9237 0.9154 0.9071   0.0083 
121   0.5666 0.5344 0.5023   0.0322 
122   0.9021 0.7805 0.6588   0.1217 
123   0.9360 0.7795 0.6229   0.1566 
124   0.9712 0.9296 0.8879   0.0417 
125   0.9634 0.9232 0.8831   0.0402 
126   0.9124 0.8619 0.8113   0.0506 
127   0.8835 0.8689 0.8544   0.0146 
128   0.9109 0.9093 0.9077   0.0016 
129   0.9250 0.8678 0.8106   0.0572 

Average  0.8719 0.8276 0.7832  0.0443 
Table 1:  Orthogonal iris segmentation quality bound data 

 
 

angle 
index   

10% 
Bound 

40% 
Bound 

70% 
Bound    Variation 

1   0.7102 0.6487 0.5571   0.0766 
2   0.7063 0.7061 0.7059   0.0002 
3   0.7364 0.7359 0.7354   0.0005 
4   0.7189 0.7184 0.7179   0.0005 
5   0.7396 0.7389 0.7382   0.0007 
6   0.6660 0.6653 0.6646   0.0007 
7   0.7209 0.7201 0.7193   0.0008 
8   0.8920 0.8912 0.8903   0.0009 
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9   0.6489 0.6479 0.6469   0.0010 

10   0.7102 0.7091 0.7080   0.0011 
11   0.6538 0.6519 0.6501   0.0019 
12   0.5946 0.5927 0.5908   0.0019 
13   0.8795 0.8776 0.8756   0.0019 
14   0.8895 0.8875 0.8854   0.0021 
15   0.6368 0.6347 0.6326   0.0021 
16   0.8873 0.8851 0.8829   0.0022 
17   0.6402 0.6377 0.6353   0.0025 
18   0.8806 0.8780 0.8754   0.0026 
19   0.8642 0.8614 0.8586   0.0028 
20   0.8445 0.8410 0.8375   0.0035 
21   0.8940 0.8903 0.8866   0.0037 
22   0.8517 0.8467 0.8417   0.0050 
23   0.8002 0.7950 0.7898   0.0052 
24   0.8754 0.8695 0.8635   0.0059 
25   0.8796 0.8731 0.8666   0.0065 
26   0.8210 0.8144 0.8078   0.0066 
27   0.6288 0.6220 0.6152   0.0068 
28   0.6543 0.6467 0.6391   0.0076 
29   0.8695 0.8608 0.8522   0.0087 
30   0.6937 0.6849 0.6760   0.0088 
31   0.8709 0.8610 0.8510   0.0100 
32   0.7137 0.7036 0.6936   0.0101 
33   0.8727 0.8626 0.8525   0.0101 
34   0.6211 0.6105 0.6000   0.0106 
35   0.7586 0.7480 0.7375   0.0106 
36   0.8901 0.8790 0.8679   0.0111 
37   0.8481 0.8369 0.8257   0.0112 
38   0.6415 0.6297 0.6179   0.0118 
39   0.8594 0.8476 0.8357   0.0119 
40   0.8195 0.8075 0.7954   0.0121 
41   0.8325 0.8202 0.8078   0.0124 
42   0.7948 0.7819 0.7691   0.0129 
43   0.9176 0.9046 0.8916   0.0130 
44   0.8117 0.7986 0.7854   0.0132 
45   0.8002 0.7869 0.7736   0.0133 
46   0.8230 0.8095 0.7961   0.0135 
47   0.7345 0.7210 0.7075   0.0135 
48   0.8368 0.8223 0.8078   0.0145 
49   0.8890 0.8742 0.8594   0.0148 
50   0.8260 0.8110 0.7959   0.0151 
51   0.8887 0.8732 0.8577   0.0155 
52   0.8244 0.8078 0.7913   0.0166 
53   0.7917 0.7749 0.7581   0.0168 
54   0.5566 0.5395 0.5223   0.0172 
55   0.8029 0.7856 0.7683   0.0173 
56   0.6539 0.6357 0.6175   0.0182 
57   0.5515 0.5326 0.5138   0.0189 
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58   FS FS FS   FS 
59   0.8547 0.8356 0.8164   0.0192 
60   0.8511 0.8311 0.8112   0.0200 
61   0.7571 0.7370 0.7168   0.0202 
62   0.7694 0.7487 0.7281   0.0207 
63   0.7001 0.6788 0.6576   0.0213 
64   0.7999 0.7779 0.7560   0.0220 
65   0.9680 0.9457 0.9235   0.0223 
66   0.7568 0.7342 0.7116   0.0226 
67   0.8501 0.8269 0.8038   0.0232 
68   0.7518 0.7283 0.7047   0.0236 
69   0.7722 0.7478 0.7235   0.0244 
70   0.9048 0.8803 0.8558   0.0245 
71   0.8157 0.7905 0.7652   0.0253 
72   0.8313 0.8059 0.7805   0.0254 
73   0.7595 0.7339 0.7084   0.0256 
74   0.7611 0.7351 0.7091   0.0260 
75   0.9327 0.9063 0.8798   0.0265 
76   0.8424 0.8156 0.7889   0.0268 
77   0.8225 0.7951 0.7678   0.0274 
78   0.7631 0.7354 0.7076   0.0278 
79   0.7354 0.7076 0.6799   0.0278 
80   0.8718 0.8438 0.8159   0.0280 
81   0.8765 0.8485 0.8205   0.0280 
82   0.7407 0.7125 0.6843   0.0282 
83   0.8609 0.8327 0.8044   0.0283 
84   0.8953 0.8668 0.8383   0.0285 
85   0.8697 0.8411 0.8126   0.0286 
86   0.7479 0.7193 0.6907   0.0286 
87   0.8179 0.7893 0.7606   0.0287 
88   0.7607 0.7320 0.7033   0.0287 
89   0.7677 0.7380 0.7084   0.0297 
90   0.9467 0.9163 0.8859   0.0304 
91   0.7586 0.7279 0.6971   0.0308 
92   0.8835 0.8527 0.8218   0.0309 
93   0.9606 0.9297 0.8987   0.0310 
94   0.8424 0.8105 0.7786   0.0319 
95   0.7684 0.7362 0.7041   0.0322 
96   0.7657 0.7335 0.7012   0.0323 
97   0.9214 0.8891 0.8568   0.0323 
98   0.7695 0.7369 0.7044   0.0326 
99   0.7175 0.6843 0.6511   0.0332 

100   0.9283 0.8946 0.8609   0.0337 
101   0.8803 0.8458 0.8112   0.0346 
102   0.7258 0.6905 0.6552   0.0353 
103   0.9340 0.8987 0.8634   0.0353 
104   0.7080 0.6726 0.6373   0.0354 
105   0.9436 0.9076 0.8716   0.0360 
106   0.9657 0.9293 0.8928   0.0365 
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107   0.9250 0.8883 0.8516   0.0367 
108   0.9517 0.9149 0.8782   0.0368 
109   0.9511 0.9139 0.8767   0.0372 
110   0.8888 0.8516 0.8143   0.0373 
111   0.9400 0.9026 0.8654   0.0373 
112   0.8914 0.8541 0.8168   0.0373 
113   0.9513 0.9139 0.8765   0.0374 
114   0.9214 0.8832 0.8449   0.0383 
115   0.9564 0.9179 0.8793   0.0386 
116   0.9528 0.9141 0.8754   0.0387 
117   0.8757 0.8368 0.7980   0.0389 
118   0.4878 0.4482 0.4085   0.0397 
119   0.9774 0.9377 0.8980   0.0397 
120   0.9661 0.9263 0.8865   0.0398 
121   0.9402 0.8992 0.8582   0.0410 
122   0.8979 0.8560 0.8140   0.0420 
123   0.8479 0.8057 0.7636   0.0422 
124   0.9402 0.8980 0.8558   0.0422 
125   0.8795 0.8371 0.7947   0.0424 
126   0.8736 0.8308 0.7880   0.0428 
127   0.9309 0.8879 0.8449   0.0430 
128   0.9681 0.9248 0.8815   0.0433 
129   0.8620 0.8186 0.7752   0.0434 
130   0.9575 0.9136 0.8696   0.0440 
131   0.9612 0.9171 0.8730   0.0441 
132   0.8316 0.7873 0.7430   0.0443 
133   0.8923 0.8478 0.8033   0.0445 
134   0.9081 0.8634 0.8187   0.0447 
135   0.9407 0.8957 0.8506   0.0451 
136   0.9040 0.8588 0.8137   0.0452 
137   0.9647 0.9191 0.8736   0.0456 
138   0.6637 0.6180 0.5723   0.0457 
139   0.9333 0.8871 0.8409   0.0462 
140   0.8812 0.8348 0.7885   0.0464 
141   0.6286 0.5817 0.5349   0.0469 
142   0.4974 0.4501 0.4028   0.0473 
143   0.7126 0.6650 0.6175   0.0476 
144   0.9406 0.8924 0.8443   0.0482 
145   0.4872 0.4390 0.3909   0.0482 
146   FS FS FS   FS 
147   0.9024 0.8538 0.8051   0.0487 
148   0.7369 0.6875 0.6381   0.0494 
149   0.6720 0.6225 0.5731   0.0495 
150   0.7294 0.6798 0.6302   0.0496 
151   0.7327 0.6828 0.6330   0.0499 
152   0.8780 0.8276 0.7772   0.0504 
153   0.7105 0.6601 0.6097   0.0504 
154   0.6770 0.6266 0.5762   0.0504 
155   0.4834 0.4329 0.3824   0.0505 
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156   0.9427 0.8908 0.8389   0.0519 
157   0.6930 0.6411 0.5892   0.0519 
158   0.9390 0.8866 0.8342   0.0524 
159   0.7433 0.6908 0.6383   0.0525 
160   0.7264 0.6728 0.6192   0.0536 
161   0.6926 0.6387 0.5849   0.0539 
162   0.9412 0.8872 0.8333   0.0540 
163   0.4892 0.4348 0.3804   0.0544 
164   FS FS FS   FS 
165   0.7241 0.6693 0.6144   0.0549 
166   0.6812 0.6263 0.5713   0.0550 
167   0.9446 0.8891 0.8337   0.0555 
168   0.9451 0.8891 0.8332   0.0560 
169   0.9395 0.8834 0.8274   0.0561 
170   0.8981 0.8411 0.7841   0.0570 
171   0.8165 0.7578 0.6991   0.0587 
172   0.9043 0.8900 0.7856   0.0594 
173   0.8724 0.8129 0.7535   0.0595 
174   0.8729 0.8121 0.7513   0.0608 
175   0.9487 0.8878 0.8269   0.0609 
176   0.8905 0.8295 0.7684   0.0611 
177   0.6589 0.5973 0.5357   0.0616 
178   0.8976 0.8353 0.7730   0.0623 
179   0.9012 0.8384 0.7757   0.0628 
180   0.9494 0.8857 0.8220   0.0637 
181   0.9232 0.8591 0.7950   0.0641 
182   0.9381 0.8739 0.8097   0.0642 
183   0.9172 0.8516 0.7860   0.0656 
184   0.8582 0.7923 0.7264   0.0659 
185   0.6556 0.5897 0.5238   0.0659 
186   0.8807 0.8148 0.7489   0.0659 
187   0.9415 0.8759 0.8096   0.0660 
188   0.7234 0.6571 0.5907   0.0664 
189   0.6590 0.5922 0.5253   0.0669 
190   0.9140 0.8471 0.7803   0.0669 
191   0.6493 0.5824 0.5154   0.0670 
192   0.6700 0.6023 0.5345   0.0678 
193   0.8267 0.7589 0.6911   0.0678 
194   0.9448 0.8769 0.8091   0.0679 
195   0.9051 0.8370 0.7689   0.0681 
196   0.6820 0.6139 0.5457   0.0682 
197   0.8684 0.7999 0.7314   0.0685 
198   0.6533 0.5845 0.5158   0.0688 
199   0.9145 0.8455 0.7766   0.0690 
200   0.9297 0.8607 0.7917   0.0690 
201   0.9012 0.8318 0.7624   0.0694 
202   0.9436 0.8740 0.8043   0.0697 
203   0.6710 0.6011 0.5311   0.0700 
204   FS FS FS   FS 
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205   0.8970 0.8263 0.7556   0.0707 
206   0.8889 0.8174 0.7458   0.0716 
207   0.8762 0.8046 0.7329   0.0717 
208   0.8986 0.8257 0.7528   0.0729 
209   0.6745 0.6010 0.5275   0.0735 
210   0.8940 0.8204 0.7468   0.0736 
211   0.8631 0.7883 0.7135   0.0748 
212   0.8593 0.7844 0.7094   0.0750 
213   0.8394 0.7643 0.6893   0.0751 
214   0.6735 0.5981 0.5226   0.0755 
215   0.8860 0.8104 0.7348   0.0756 
216   0.8407 0.7624 0.6841   0.0783 
217   0.8417 0.7632 0.6847   0.0785 
218   0.8605 0.7817 0.7029   0.0788 
219   0.6498 0.5686 0.4875   0.0812 
220   0.6574 0.5761 0.4949   0.0813 
221   0.8671 0.7855 0.7039   0.0816 
222   0.9425 0.8603 0.7781   0.0822 
223   0.9386 0.8563 0.7740   0.0823 
224   0.8883 0.8049 0.7216   0.0834 
225   0.8789 0.7944 0.7098   0.0846 
226   0.8951 0.8095 0.7238   0.0857 
227   0.9573 0.8708 0.7844   0.0865 
228   0.8695 0.7789 0.6884   0.0906 
229   0.8527 0.7621 0.6715   0.0906 
230   0.6956 0.6040 0.5124   0.0916 
231   0.9201 0.8206 0.7211   0.0995 
232   0.9095 0.8044 0.6993   0.1051 
233   0.8678 0.7472 0.6265   0.1207 
234   0.8933 0.7698 0.6462   0.1236 
235   0.8732 0.7494 0.6257   0.1238 
236   0.8355 0.6634 0.4913   0.1721 

Average  0.8208 0.7792 0.7383  0.0412 
Table 2:  Non-orthogonal iris segmentation quality bound data 

 



 
 
 

  

97CONSENT and INFORMATION FORM 
  Biometric Dataset Collection 

 
Introduction: I, ____________________, have been invited to participate in this research study 
which has been explained to me and is being conducted in the Electrical Engineering Department 
at the United States Naval Academy.  
 
Purposes of the Study: The purpose of this study is to research techniques in biometric signal 
processing.  
 
Description of Procedures: This study involves capturing my fingerprints, iris patterns, voice, 
and 2D and 3D facial image, using several biometric scanners. Any of the above mentioned 
biometrics may or may not be captured depending on the availability of devices and personnel.  
 
Risks and Discomforts: I should not experience any inconvenience or discomfort beyond that 
typically associated with my picture being taken, finger or hand put on a surface, or reading 
audibly. There are no known or expected risks from participating in this study.  
 
Benefits: I understand that this study is not expected to be of direct benefit to me, but the 
knowledge gained may be of benefit to others. 
 
Financial Considerations: I will incur no costs for participating in this study, and I will not be 
paid to participate in this study. 
 
Confidentiality: I understand that any information about me obtained as a result of my 
participation in this research will be kept as confidential as legally possible. In any publication 
that results from this research my name, my facial images, or any information from which I 
might be obviously identified will not be published unless my consent is obtained.  
 
Voluntary Participation: Participation in this study is voluntary. I have been given the 
opportunity to ask questions about the research, and I have received answers concerning areas I 
did not understand.  
 
--------------------------------------------------------------------------------------------------------------------- 
 
You are making a decision whether or not to participate. Your signature indicates that you have 
read and understand the information presented above, that you have decided to participate, and 
that you consent to the study as described.  
 
 
Participant Signature: ___________________________________________________ 
 
Participant Name (printed): ____________________________Date: ______________ 
 
Investigator Name (printed): ___________________________ 
 
Investigator Signature: ________________________________ 
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ABSTRACT 

 
Iris recognition has been shown to be very accurate for 
human identification.  In this paper, we develop a 
technique for iris pattern extraction utilizing the least 
significant bit-plane: the least significant bit of every pixel 
in the image.  Through binary morphology applied to the 
bit-plane, the pupillay boundary of the iris is determined.  
The limbic boundary is identified by evaluating the 
standard deviation of the image intensity along the vertical 
and horizontal axes.  Because our extraction approach 
restricts localization techniques to evaluating only bit-
planes and standard deviations, iris pattern extraction is 
not dependent on circular edge detection.  This allows for 
an expanded functionality of iris identification technology 
by no longer requiring a frontal view, which leads to the 
potential for off-angle iris recognition technology.  Initial 
results show that it is possible to fit a close elliptical 
approximation to an iris pattern by using only bit-planes 
and standard deviations for iris localization. 
 

1. INTRODUCTION 
 

 The iris is the round, pigmented tissue that lies behind 
the cornea [1]. The patterns within the iris are very unique 
to each person, and even the left eye is unique from the 
right eye [2]. Compared with other biometric features such 
as face and fingerprint, iris patterns are more stable and 
reliable [3, 4]. 

Since Ophthalmologists Flom and Safir first noted the 
uniqueness of the iris patterns in 1987 [5], various 
algorithms have been proposed for iris recognition [1, 6-
12], which include the quadrature 2D Gabor wavelet 
method [1],  the Laplacian parameter approach [8],  zero-
crossings of the one-dimensional (1D) wavelet [9],  the 
independent component analysis (ICA) approach [10],  
Gabor filtering and wavelet transform [11], and the texture 
analysis using multi-channel [12]. Recently, Du et al. 
designed a local texture analysis algorithm to calculate the 
local variances of iris images and generate a one-
dimensional iris signature [6, 7], which relaxed the 
requirement of entire whole iris for identification and 
recognition [7].  However, all of these algorithms assume  

that a circular iris pattern has been successfully extracted 
from an image 

In practice, the iris pattern must be extracted from the 
image prior to analysis.  Currently, iris recognition systems 
require a cooperative subject [3].  Both commercial 
systems that utilize Daugman’s algorithm [13] and other 
separately developed iris recognition techniques like the 
one-dimensional approach developed by Du et al. [6, 7] 
rely on this supposition to detect the iris pattern using 
circular edge detection.  As an iris image is rotated away 
from the normal to the imaging device, these systems 
develop complications in determining the iris pattern.  They 
are unable to successfully locate the iris pattern in order to 
proceed to recognition and matching.  Our initial results 
show that it is possible to fit a close elliptical 
approximation to both orthogonal and non-orthogonal iris 
patterns in order to extract them from digital images, which 
can potentially be adapted for non-orthogonal iris 
recognition. 
 

2.  MORPHOLOGICAL OPERATIONS 
 

 Erosion and dilation are two morphological operations 
that are very useful in processing binary images.  Erosion 
and dilation, as depicted in Fig 1 below, 

 
Figure 1: (a) Original binary image (b) Image (a) eroded by a 3x3 
structuring element (c) Image (a) dilated by a 3x3 structuring element 
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allow groupings of ones, represented by white pixels, to 
be enlarged or shrunk to produce resulting images that 
either fill grouping gaps or remove small groupings of 
ones as necessary.   
 Erosion can best be described as a mathematical 
operator that shrinks groupings of ones in binary images.  
A structuring element, or kernel, represented by a matrix 
of ones and zeros, is passed through the original image.  
During erosion, the resultant image is the set of all 
structuring element origin locations where the translated 
structuring element has no overlap with the background of 
the original image [14].  Ultimately, small groupings of 
ones and thin lines are removed from the image. 
 On the other hand, dilation is the mathematical 
operator that expands groupings of ones, filling ‘gaps’ or 
‘holes’ in a binary image.  The dilation of an image by a 
structuring element results in an image consisting of all 
the structuring element origin locations where the 
reflected and translated structuring element overlaps at 
least some portion of the image [14].  By repeatedly 
dilating a binary image, black space (zeros) within 
groupings of ones is removed in order to achieve a single 
homogenous region. 
 

3.  PUPILLARY BOUNDARY DETECTION 
 

To find the pupillary boundary, an original digital iris 
image is first adjusted and the least significant bit-plane is 
removed for analysis.  The first step towards achieving a 
homogenous region that can be identified as the pupil is to 
set the image values below 60 and above 240 equal to 
255.  This sets the pupil to binary ‘1’ in all bit-planes as 
seen in Fig. 2. 

The purpose for adjusting values above 240 to 255 is 

to reduce the effect of specularities that may be present in 
the pupil.   
 Bit-plane 0, the least significant bit-plane, is used to 
determine the pupillary boundary because it not only 
provides a relatively homogenous region that is easily 
identifiable as the pupil, but also because it is fast and easy 
to extract from the original image.  After performing 
modulo division by two on the image, the resultant is the 
least significant bit-plane. The borders of the bit-plane are 
removed to minimize the effects of near-infrared glare.  
Figs. 3 shows a series of morphological operations using 
3x3 and 7x7 kernels to erode and dilate the binary image 
until a single homogeneous region remains. 

 
Figure 3: (a) Least significant bit-plane (b) Bit-plane zero with borders 
removed (c) Initial erosion and dilation using 3x3 kernel (d) Final 
homogenous pupil mask 
  

(a) (b)

(c) (d)

Figure 2: (a) Most significant bit-plane 7 (b) Bit-plane 6 (c) Bit-plane 5 (d) Bit-plane 4 (e) Bit-plane 3 (f) Bit-plane 2 (g) Bit-plane 1 (h) Least 
significant bit-plane 0 

(e) 

(a) (b) (c) (d) 

(e) (f) (g) (h) 
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 Once the final homogenous pupil mask is found 
through binary morphology, the end points in the cardinal 
directions – N, E, S, W – are identified.  Equation (1) is 
used to determine the elliptical curve, 

                                   ,12

2

2

2

=+
a
y

b
x

                           (1) 

where b and a are the major and minor axes, and x and y 
are the row and column coordinates of the ellipse. The 
elliptical curve is fit to these points, with each half of the 
ellipse being calculated independently of the other as seen 
in Fig 4. 

(a) (b)(a) (b)  
Figure 4: (a) N,S,E,W points of pupillary boundary (b) Elliptical curve fit 
through cardinal points defining pupillary boundary 

 
4. LIMBIC BOUNDARY DETECTION 

 
Once the pupillary boundary has been successfully 
determined, the limbic boundary must then be isolated.  To 
find the limbic boundary, the division between the iris and 
the sclera [15], we use standard deviation windows to 
calculate local standard deviations in the vertical and 
horizontal directions.  The resulting standard deviation 
windows are thresholded in order to produce a binary 
image.  By eroding and dilating these standard deviation 
windows, a single row or column vector is obtained as seen 
in Fig 5.  These vectors are then used to determine the 
location of the limbic boundary.   

 
Figure 5: (a) horizontal local standard deviation vector (b) vertical local 
standard deviation vector 
 
 In order to determine the limbic boundaries from the 
horizontal and vertical standard deviation vectors, the 
pupillary boundary coordinates in the cardinal directions 
must be known.  These coordinates in each of their 
respective vectors – E, W in the horizontal direction and N, 
S in the vertical direction – provide a starting location for 
the search of the limbic boundary because the limbic 

boundary may not be located on the interior of the 
pupillary boundary. 
 To automatically isolate the limbic boundary using 
standard deviation windows, a continual guess-and-check 
method is used.  The pupil boundary in one of the cardinal 
directions is used as an initial starting location.  For 
example, to find the left most limbic boundary, starting at 
the left most pupillary boundary and moving in a direction 
away from the pupil, we scan left within the standard 
deviation band until we reach a grouping of ones.  This 
first point is marked as a potential limbic boundary.  In this 
example, the scan continues left until the next grouping of 
ones is located.  If the next indication of a potential limbic 
boundary is reasonable, that location is marked as the new 
limbic boundary potential.  A reasonable limbic boundary 
marker is one that does not appear after a fifty pixel 
duration of zeros.  These zeros represent the either the 
uniformity of the sclera, the white part of the eye, or the 
constant skin tones above and below the eyelashes.  Fig 6 
demonstrates the automatic limbic boundary determination 
and testing features. 

 
Figure 6: (a) Horizontal local standard deviation vector with initial 
boundaries highlighted (b) Eye image with initial horizontal boundaries 
indicated (c) Vertical local standard deviation vector with final limbic 
boundaries highlighted (d) Eye image with final horizontal boundaries 
indicated 

 
Once both the horizontal and vertical limbic 

boundaries have been determined, Eqn 1 is used to 
calculate the elliptical curve of each half of the iris.  
Again, each half of the ellipse is calculated independently 
of the other, and the resulting area between the pupillary 
boundary and the limbic boundary forms the iris mask, as 
seen in Fig 7. 
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Figure 7: Eye image with final pupillary and limbic boundaries shown 

 
5. EXPERIMENTAL RESULTS 

 
The Institute of Automation, Chinese Academy of Science, 
CASIA, [16] and the United States Naval Academy, 
USNA, biometrics laboratory databases were used for 
algorithm testing.  Performance of the bit-plane and 
standard deviation window process was divided into three 
categories based on the amount of iris pattern within the 
mask, as well as fit of the elliptical boundaries.  Fig 8 
shows examples of each category and an approximate fit 
used for categorizing output.  Because of the difficulties in 
determining the limbic boundary, three distinct output 
categories emerged.  Category 1 images, Figs 8(a) and 8(b), 

 
Figure 8: (a) and (b) Category 1 iris localization (c) and (d) Category 2 
iris localization (e) and (f) Category 3 iris localization  
 
are defined by output that correctly identifies and extracts 
the iris pattern.  Category 2 images, Figs 8(c) and 8(d), are 
those images in which the limbic boundary does not 
encompass the full iris pattern.  This is caused primarily by 
a lack of distinction between the limbic boundary and the 
sclera.  In the standard deviation windows, no significant 
variation in pixel intensity occurred to alert the presence of 
the boundary.  Category 3 images, Figs 8(e) and 8(f), are 
the remaining images.  Output from these categories 
typically traversed the image far beyond the limbic 
boundary.  Causes for the inability to identify these images 
can be attributed to large occlusions of the eyelids or 
eyelashes, or intense glare from the near infrared 
illumination of the surrounding skin.  Table 1 shows 

results for iris extraction of the CASIA and USNA 
databases.  
  

 Category 1 
(Excellent) 

Category 2 
(Fair) 

Category 3 
(Poor) 

CASIA 63 29 16 
USNA 78 18 8 
Table 1: Experimental results of bit-plane and standard deviation 

approach to iris pattern extraction. 
 

 For initial CASIA testing, the second of seven images 
was used for all 108 subjects.  When testing the USNA 
images, one image from 104 different eyes was used.  In all 
cases for the CASIA database images and in all but two 
cases for the USNA database images, the pupil was 
successfully isolated.  Limbic boundary detection was the 
distinguishing factor in determining performance of this 
method of iris extraction. 
 Difficulties arose due to excessive eyelash interference 
at the limbic boundaries, causing large groupings of ones 
in the vertical standard deviation windows.  These large 
groupings can be accredited to the static threshold that was 
used in calculating the standard deviation windows, a 
threshold that was determined experimentally to yield the 
best overall results.  Experimentally, the best threshold to 
use varies over a forty integer value range.  The use of a 
dynamic threshold based on individual image 
characteristics will most likely improve the results of the 
vertical and horizontal standard deviation windows.  To 
initially compensate for these groupings of ones that fall 
within the potential area for limbic boundaries, if a 
grouping of fifty or more ones is encountered in the 
vertical direction, the center point of the grouping is 
selected as the limbic boundary.  
  

 
The response of successful iris pattern extraction from the 
USNA database images was substantially better than the 
CASIA database.  Reasons for the discrepancy in 
performance include unknown preprocessing to CASIA 
database images, and less extreme iris pattern occlusion 
due to eyelids and eyelashes in the USNA database.  Also, 
the resolution on the CASIA database images is less than 
the USNA database images.  The pixel vales appear to vary 
less between the limbic boundary and the sclera in the 
CASIA database images.  Improving the limbic boundary 
detection modules to account for the increased shadowing 
with a dynamic threshold should improve overall system 
performance. 

 
6. CONCLUSIONS 

 
All of the statistical results found in Table 1 were 

conducted with iris images in which the user was looking 
directly at the imaging device.  The purpose for 

(a) 

(b) 

(c) 

(d) 

(e)

(f)
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approaching the issue of iris pattern extraction without the 
assumption that patterns are circular is to allow for the iris 
extraction of non-orthogonally captured iris images.  Initial 
tests show that with some additional modifications to the 
limbic boundary detection, this approach is applicable to 
non-orthogonal iris images as seen in Fig 9. 

 
Figure 9: (a) Non-orthogonal image (b) Resulting elliptical iris mask 
 
Because the iris image in Fig 9 is rotated away from the 
normal to the imaging device, current commercial systems 
develop complications extracting the iris pattern.  Initial 
results show that it is possible to fit a close elliptical 
approximation to non-orthogonal iris patterns using bit-
planes and standard deviation windows, which can 
potentially be adapted for off-angle iris recognition. 
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ABSTRACT 

 
Iris recognition has been shown to be very accurate for 
human identification. In this paper, we investigate the 
performance of the use of a partial iris for recognition. A 
partial iris identification system based on a one-
dimensional approach to iris identification is developed. 
The experiment results shows that a more distinguishable 
and individually unique signal is found in the inner rings 
of the iris.  The results also show that it is possible to use 
only a portion of the iris for human identification.  

 

1. INTRODUCTION 
 

The iris is the round, pigmented tissue that lies behind 
the cornea [1]. The patterns within the iris are very unique 
to each person, and even the left eye is unique from the 
right eye [2]. Compared with other biometric features 
such as face and fingerprint, iris patterns are more stable 
and reliable [11,12]. 

Since ophthalmologists Flom and Safir first noted the 
uniqueness of the iris patterns in 1987 [3], various 
algorithms have been proposed for iris recognition [1, 4-
10], which include the quadrature 2D Gabor wavelet 
method [1],  the Laplacian parameter approach [6],  zero-
crossings of the one-dimensional (1D) wavelet [7],  the 
independent component analysis (ICA) approach [8],  
Gabor filtering and wavelet transform [9], and the texture 
analysis using multi-channel Gabor filtering and wavelet 
transform [10]. Recently, Du et al. designed a local 
texture analysis algorithm to calculate the local variances 
of iris images and generate a one-dimensional iris 
signature [4, 5], which relaxed the requirement of a 
significant portion of the iris for identification and 
recognition [5].  

Currently, iris recognition systems require a 
cooperative subject [11]. Partial iris recognition 
algorithms would be very important in designing systems, 
where capturing the entire iris may not be feasible.   

In this paper, we investigate the accuracy of using a 
partial iris for identification. In addition, we also 

investigate which portion of the iris has most 
distinguishable patterns. A partial iris identification 
system based on a one-dimensional approach to iris 
identification system is developed. The experimental 
results show that it is possible to use only a partial iris 
image for human identification.  
 

2.  ONE DIMENSIONAL APPROACH TO IRIS 
IDENTIFICATION 

 
In this paper, the one dimensional approach proposed 

by Du et al. [4, 5] is used as a technique for recognition 
analysis. Here, we briefly introduce the one-dimensional 
approach.  

Fig. 1 shows the one-dimensional iris identification 
system architecture, which includes the Preprocessing 
Module, the Mask Generation Module, the Local Texture 
Pattern (LTP) Module, the Iris Signature Generation 
Module, the Enrollment Module, the Iris Signature 
Database and the Iris Identification Module.  
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Figure 1. One-dimensional Iris Identification System 
Architecture [4, 5]. 
  
 The Preprocessing Module finds the pupillary 
boundary, the limbic boundary, the eyelids, and the 
eyelashes in the input raw iris image. In addition, the iris 
image is transformed to the polar coordinates from 
rectangular coordinates in this step. At this point in the 
processing, an image is created which each row represents 
a concentric circle of iris pixels. 
 The Mask Generation Module isolates the iris pixels 
and normalizes the distance between the limbic boundary 
and the pupillary boundary to a constant L%  pixels. Here 
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we select L% = 65. In this way, we achieve resolution 
invariance.  

The LTP Module generates the local iris patterns by 
using overlapped windows to calculate the local 
variances.  
 The Iris Signature Generation Module builds a one-
dimensional signature for each iris image by averaging the 
LTP values of each row. If more than 65% of the pixels in 
a row are non-iris, the signature value for that row is set to 
be 0. 
 The Enrollment Module averages multiple iris 
signatures generated from the same iris to create the one-
dimensional iris signature template for later identification.  
 The Iris Signature Database collects the one-
dimensional iris signatures and stores them in the database 
for further identification.  

The Iris Identification Module matches the iris 
signature generated from a newly input iris image with 
the enrolled iris signatures inside the database. The 
matching score is based on the Du measurement [5]. The 
output of this module is the 10 closest matches from the 
database. 

The merit of this one-dimensional LTP method is that 
it relaxes the requirement of using a major part of the 
iris, which can enable partial iris recognition. In 
addition, this approach generates a list of possible 
matches instead of only the best match. In this way, the 
users could potentially identify the iris image by another 
level of analysis. 

  
3. PARTIAL IRIS IDENTIFICATION ANALYSIS 

 
In our partial iris identification analysis, we used part 

of the iris image to generate the one-dimensional 
signatures. Fig. 2 shows the system architecture for 
generating the partial iris and the partial iris signature for 
iris identification, which includes the Partial Iris 
Generation Module, the Preprocessing and Mask 
Generation Module, the LTP Module, the 1-D Partial Iris 
Signature Generation Module, the Iris Signature Database 
Module, and the Iris Identification Module.  

Fig. 3(a) is an example iris image. The Partial Iris 
Generation Module will select a portion of the iris based 
on a particular experiment. In our experiments, we 
analyzed three different kinds of partial iris images:  

• Left-to-Right: The “Left-to-Right” model 
gradually exposes the iris beginning at the left 
limbic boundary and concluding at the right 
limbic boundary.  (Fig. 3(b)). 

• Outside-to-Inside: The “Outside-to-Inside” 
model starts at the outer limbic boundary and 
gradually exposes the iris pattern in concentric 
rings moving toward the pupil.  (Fig. 3(c)). 

• Inside-to-Outside: The “Inside-to-Outside” 
model gradually exposes concentric rings 
beginning at the pupillary boundary and 
concluding at the limbic boundary.  (Fig. 3(d)). 
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Figure. 2. Partial Iris Identification System 
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Figure 3. An example of generated partial iris images. (a) The 
original iris image, (b) Left-to-Right, (c) Outside-to-Inside, (d) 
Inside-to-Outside. (r, R, and L are pupil, limbic, and partial 
radius respectively.)  

The percentage of the iris used in the identification is 
calculated differently for these three different approaches.  
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For Fig. 3(b), the percentage is calculated 

by: Area of the Partial Iris
Partial percentage= 100%

Total Area of the Iris
× ; for Fig. 

3(c), R-L
Partial percentage= 100%

R-r
× ; for Fig. 3(d), 

L-r
Partial percentage= 100%

R-r
×  (r, R, and L are defining 

in Fig. 3).  
Depending on the percentage of the iris image used, it 

may be hard to detect the pupil, the limbic boundary, the 
eyelids and eyelashes. The Preprocessing and Mask 
Generation Module will use the information retrieved 
from the entire iris image to generate the normalized mask 
for the partial iris image. 

The LTP Module generates the local iris patterns by 
using overlapped windows to calculate the local variances 
and is similar to that of the 1D Iris Identification System 
in Fig. 1.  

The 1-D Partial Iris Signature Generation Module 
builds a one-dimensional signature for each partial iris 
image by averaging the available LTP values of each row.  

The Iris Identification Module matches the partial iris 
signature with the iris signatures inside the database, 
contained in the Database Module. Here, the iris 
signatures inside the database are also cut to match the 
length of the partial iris signature. The matching score is 
based on the Du measurement. The output of this module 
is the rank 10 closest matches from the database, the 
rank 5 closest matches, or the rank 1 closest match. (rank 
10/rank 5/rank 1 means the matches following in top 10/ 
top 5/top 1 rank.) 

 
4. EXPERIMENTAL RESULTS 

 
In our experiment, the iris images from the CASIA iris 

image database [14] were used. It contains 756 iris images 
from 108 different eyes (each eye has 7 iris images). As 
stated in [5], 2 sets of iris images are not used because of 
insufficient iris patterns or unclear iris pattern. Overall, 
742 iris images from 106 different eyes are used in the 
experiment.  

In our experiment, the accuracy rate for partial iris 
recognition is defined as: 

 

100%
Number of Correctly Identified Iris Images

Accuracy rate=
Total Number of Iris Images in the Test

× (1) 

 
Here “the correctly identified iris images” means the 

correctly identified iris images in the rank 10/5/1 ranks. 
The testing results coincide with intuition; as more of the 
iris pattern is available for analysis, the probability of 
correct match increases. 

Fig. 4 shows the iris identification results for the “Left-
to-Right” model. On the left side of the curve, the 
accuracy rate increases gradually and consistently 
between approximately 45% of iris pattern exposure.  The 
curve is fairly flat until over 55% of iris pattern exposure, 
where the curve starts increasing again. The curve 
remaining steady approximately between 45%-55%, 
corresponds to regions covered by the eyelids and 
eyelashes. The reflection points of the curves are around 
50%, the center of the iris. As the pattern is exposed, and 
the pupil is revealed, less distinguishable patterns are 
added to the image due to the relative area the pupil 
occupies as compared to the iris in the central vertical 
band of the eye.  Once the pupil is fully exposed and more 
of the iris pattern is again added to the image, the percent 
chance that the test case matches the original increases, as 
expected. By slowly increasing the amount of iris area 
exposed in the “Left-to-Right” models, only a smaller 
relative area (of iris pattern) is exposed in the central 
vertical band (45%-55%), limiting its relative 
effectiveness in aiding in identification.  

The performance of partial iris identification from the 
“Outside-to-Inside” Model is shown in Fig. 5, while the 
curves for the “Inside-to-Outside” model are shown in 
Fig. 6. In Fig. 5, the accuracy rate increases, and there is 
no obvious “knee in the curve”. However, in Fig. 6, the 
accuracy rate increases much more dramatically than the 
other methods, and as a result, the “knee” for this model is 
located at approximately 35% of iris pattern exposure. 

By setting a threshold for acceptance at a 95% 
accuracy rate (for rank 10 matching), the “Outside-to-
Inside” model requires at least 65% of the iris pattern to 
be present.  Conversely, only 40% on the iris pattern 
needs to be exposed for the “Inside-to-Outside” model to 
achieve the same accuracy rate. These experimental 
results support the conjecture that a more distinguishable 
and individually unique signal is found in the inner rings 
of the iris.  As one traverses to the limbic boundary of the 
iris, the pattern becomes less defined, and ultimately less 
useful in determining identity. For the “Left-to-Right” 
model, 80% of the iris pattern would be necessary for a 
95% accuracy rate for rank 10 matching. In the “Left-to-
Right” model, each point of the one-dimensional signature 
is affected by the portion of the exposed iris, while for the 
“Inside-to-Outside” and “Outside-to-Inside” models, the 
points of the generated one-dimensional signature for the 
partial iris are either very similar to those of the original 
iris or zeroed out.  

From Figs. 4-6, we can also see that using only 40% 
of the iris can achieve more than 85% accuracy rate for 
rank 10, 70% accuracy rate for Rank 5, and 45% for Rank 
1. It shows that the partial iris recognition is promising for 
use in human identification using a rank 10/5 technique. 
However, it would be very challenging to use in human 
verification (rank 1). 
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Figure 4. The performance of partial iris identification for “Left-
to-Right” Model. 
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Figure 5. The performance of partial iris identification from the 
“Outside-to-Inside” Model 
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Figure 6. The performance of iris identification from the 
“Inside-to-Outside” Model 
 

5. CONCLUSIONS 
 

In this paper, the performance of partial iris 
identification is analyzed using the One-Dimensional LTP 
Approach. The experiment results show that a more 
distinguishable and individually unique signal is found in 
the inner rings of the iris.  Also, as expected, the 
experimental results show that the eyelids and eyelashes 

detrimentally affect the iris recognition result. By slowly 
increasing the amount of iris area exposed in the “Left-to-
Right” models, only a smaller relative area (of iris pattern) 
is exposed in the central vertical band, limiting its relative 
effectiveness in aiding in identification.  

Finally, the experimental results show that a partial 
iris image can be used for human identification.  
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ABSTRACT 

   
In this paper, we investigate the accuracy of using a partial iris image for identification and 
determine which portion of the iris has the most distinguishable patterns. Moreover, we compare 
these results with the results of Du et. al. using the CASIA database. The experimental results 
show that it is challenging but feasible to use only a partial iris image for human identification.  
 
Keywords: 1D iris identification, partial iris, iris recognition 
 

1. INTRODUCTION 
 

The iris (Fig. 1) is a protected internal organ behind the cornea which gives color to the eye 
[1]. Ophthalmologists Flom and Safir first noted that the iris is very unique for each person and 
remains unchanged after the first year of human life [2]. For each person, the left eye is 
distinctive from the right eye [2]. In 1987, they described a manual approach for iris recognition 
based on visible iris features. In 1994, Daugman invented the first automatic iris recognition 
system [3]. Since then, various algorithms have been proposed for iris recognition [3-11], which 
include Daugman’s quadrature 2D Gabor wavelet method [3] and a one-dimensional iris 
recognition approach [4, 5, 11] by Du et. al.   

 

 
 

Figure 1: An iris image. 



 
108

Currently, iris recognition systems require a cooperative subject [12]. Partial iris recognition 
algorithms would be very important in surveillance applications where capturing the entire iris 
may not be feasible. Little research has been performed in this area.   

In this paper, we investigate the accuracy of using a partial iris image for identification and 
determine which portion of the iris has the most distinguishable patterns. Moreover, we compare 
these results against with the results of Du et. al. using the CASIA database [13] reported in [14]. 
The experimental results show that it is challenging but feasible to use only a partial iris image 
for human identification.  
 

2. PARTIAL IRIS GENERATION 
 

To analyze the partial iris recognition performance, we generated a collection of partial iris 
images from full iris images. For our experiments, we generated four different kinds of partial 
iris images. Fig, 2 provides an example, with Fig. 2(a) being the original full iris image. From 
this image, we created the following:  

 
• Left-to-Right: The “Left-to-Right” model gradually exposes the iris beginning at the left 

limbic boundary and concluding at the right limbic boundary (Fig. 2(b)). 
• Right-to-Left: The “Right-to-Left” model gradually exposes the iris beginning at the right 

limbic boundary and concluding at the left limbic boundary (Fig. 2(c)). 
• Radial Outside-to-Inside: The “Radial Outside-to-Inside” model starts radially at the 

outer limbic boundary and gradually exposes the iris pattern in concentric rings moving 
toward the pupil (Fig. 2(d)). 

• Radial Inside-to-Outside: The “Radial Inside-to-Outside” model gradually exposes 
concentric rings beginning radially at the pupillary boundary and concluding at the limbic 
boundary. (Fig. 2(e)). 

 
The percentage of the iris patterns used in the identification is calculated by: 
 

Area of the Partial IrisPartial percentage = 100%
Total Area of the Iris

×    (1)  
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Figure 2. An example of generated partial iris images. (a) The original iris image, (b) Left-to-
Right, (c) Right-to-Left, (d) Radial Outside-to-Inside, (e) Radial Inside-to-Outside. (r, R, and L 
are pupil, limbic, and partial radius respectively.)  

 
With the partial iris images generated in Fig. 2, we can analyze four different kinds of 

situations: 
• Tear Duct-to-Outside: The “Tear Duct-to-Outside” model gradually exposes the iris 

beginning at the near tear duct side and concluding at the far duct side. For the subject’s 
left eye, This corresponds to the “Left-to-Right” model; for the subject’s right eye, it 
would be the “Right-to-Left” Model. 

• Outside-to-Tear Duct: The “Outside-to-Tear Duct” model moves in the inverse direction 
of the “Tear Duct-to-Outside” model. 
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• Radial Outside-to-Inside: Uses the “Outside-to-Inside” model for analysis. 
• Radial Inside-to-Outside: Uses the “Radial Inside-to-Outside” model for analysis.  

 
3. 1D IRIS IDENTIFICATION ALGORITHM 

 
Fig. 3 shows the 1D Iris Identification System, which is used to analyze potential iris 

recognition. This algorithm is explained in detail in [4], and the functionality of the block 
diagram of Fig. 3 is briefly described in the following.  

 

 
Figure 3. 1D Iris Identification System 

 
The Preprocessing Module finds the pupillary boundary, the limbic boundary, the eyelids, and 

the eyelashes in the input raw iris image. The Mask Generation Module isolates the iris pixels 
and normalizes the distance between the limbic boundary and the pupillary boundary to a 
constant pixel size. The LTP Module generates the local iris patterns by using overlapped 
windows to calculate the local variances. The Iris Signature Generation Module builds a one-
dimensional signature for each iris image by averaging the LTP values of each row. The Iris 
Signature Database stores the one-dimensional iris signatures in the database. The Iris 
Identification Module matches the iris signature generated from a newly input iris image with the 
enrolled iris signatures in the database. The matching score is based on the Du measurement [5]. 
The output of this module is the ten closest matches from the database. 

The merit of this one-dimensional method is that it relaxes the requirement of using a major 
portion of the iris, which can enable partial iris recognition. In addition, this approach generates 
a list of possible matches instead of only the best match. In this way, the users could potentially 
identify the iris by another level of analysis. 

 
The partial iris images are used to produce the iris pattern (signature). For a partial iris image, 

depending on the percentage of the iris image used it would be very difficult or even impossible 
to detect the pupil, the limbic boundary, the eyelids and eyelashes.  The purpose of the paper is 
to analyze the partial iris identification performance. Therefore, in this system, we first 
preprocess the input raw full iris image to identify the iris area and determine pupil center, pupil 
radius, and limbic radius. In addition, eyelids and eyelashes are detected. 
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4. EXPERIMENTAL RESULTS 
 
In our database, we have collected 1520 iris images from 106 different eyes. These iris images 

include those with contact lens and eyeglasses. In this analysis, we only use iris images from 
bare eyes (iris images without eyeglasses or contact lens). In addition, blurred iris images were 
eliminated from the experiment. Overall 818 iris images were used, 395 from left eyes and 423 
from right eyes. 

 
In this experiment, the accuracy rate for partial iris recognition is defined as: 
 

Number of Correctly Identified Iris ImagesAccuracy rate= 100%
Total Number of Iris Images Tested

×    (4) 

 
Here “the correctly identified iris images” means the algorithm correctly placed the iris 

images within the top 10, or top 5, or top 1 (also called rank 10, rank 5 or rank 1). The testing 
results coincide with intuition; as more of the iris pattern is available for analysis, the probability 
of a correct match increases. 

 
Fig. 6 shows the iris identification results for the “Tear Duct-to-Outside” model. Here, the 

Rank 10 and Rank 5 curves increase sharply until approximately 35% of iris pattern exposure, 
which is the reflection point of the curves. After this point, the two curves increase very slowly. 
However, the Rank 1 curves increases gradually and consistently throughout the exposing of the 
iris patterns. From Fig. 6, we find that exposure of 30% of the iris patterns is good enough to 
achieve over 95% accuracy for a Rank 10 system and over 90% accuracy for a Rank 5 system; 
while accurate identification (Rank 1) needs far more information.  
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Figure 6. Partial iris identification performance for the “Tear Duct-to-Outside” model. 
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Fig. 7 shows the iris identification results for the “Outside-to-Tear Duct” model. In Fig. 7, the 
curves increase gradually and consistently until approximately 40% of iris pattern exposure. The 
curves remain fairly flat between approximately 40%-60%, correspondingly to regions covered 
by the eyelids and  eyelashes. Once the pupil is fully exposed and more of the iris pattern is 
again added to the image, the accuracy again increases, as expected.  
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Figure 7. Partial iris identification performance for “Outside-to-Tear Duct”  model. 

 
Comparing Fig. 6 and Fig. 7, the Tear Duct-to-Outside model uses a smaller portion of the iris 

pattern to achieve the same accuracy rate as that of the “Outside-to-Tear Duct” model. For 
example, to achieve a 90% accuracy rate in the Rank 10 system, the “Tear Duct-to-Outside” 
model needs 25% while the Outside-to-Tear Duct model needs 45%. For 50% of iris pattern 
exposed, the “Tear Duct-to-Outside” model can achieve 70% identification (Rank 1) accuracy 
while the “Outside-to-Tear Duct” model can only achieve 50% accuracy.  

The differences between these two models are reasonable and expected. They result from the 
shape of the eyelids. The eyelids tend to cover more of the Outside half than the Tear Duct side 
(Fig. 8). From the above analysis, we see that using these iris patterns to do partial identification 
is more challenging but feasible by using a Rank 10 or Rank 5 system.  
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(a) A left eye    (b) A right eye 

Figure 8. The shape of the eyelids 
 
Because the iris images in the CASIA database do not label the left or right eye and it cannot 

always be visually determined (some eye images are clipped in the left and right side), we cannot 
compare the Tear Duct-to-Outside and Outside-to-Tear Duct models. Du et al. has used the 
“Left-to-Right” model to analyze the CASIA database [14]. The “Left-to-Right” model can be 
looked on as an average of the “Tear Duct-to-Outside” model and the “Outside-to-Tear Duct” 
model. In the CASIA database, the curve remained steady between approximately 45%-55% 
exposure. This observation matches the simulation results using our own database.  

The performance of partial iris identification for the “Radial Inside-to-Outside” Model is 
shown in Fig. 9, while the curves for the “Radial Outside-to-Inside” model are shown in Fig. 10. 
In Fig. 9, the accuracy rate increases much more dramatically than the other methods, and as a 
result, the “knee” for this model is located at approximately 20% of iris pattern exposure. In Fig. 
10, the accuracy rate increases quickly up to 20%, then increases at a slower rate.  
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Figure 9. Partial iris identification performance for “Radial Inside-to-Outside” model. 
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Figure 10. Partial iris identification performance for “Radial Outside-to-Inside”  model. 

 
By setting a threshold for acceptance at a 95% accuracy rate (for rank 10 matching), the 

“Radial Outside-to-Inside” model requires at least 60% of the iris pattern to be present.  
Conversely, only 25% on the iris pattern needs to be exposed for the “Radial Inside-to-Outside” 
model to achieve the same accuracy rate. These experimental results support the conjecture that 
a more distinguishable and individually unique signal is found in the inner rings of the iris.   

In all cases (Figs. 6,7,9,10), with 40% of the iris, a 90% accuracy rate can be achieved for 
rank 10, a 80% accuracy rate for Rank 5, and a 45% accuracy rate for Rank 1. It shows that the 
partial iris recognition is promising for use in human identification using a rank 10/5 technique. 
However, it did not perform well enough for rank 1 identification 

 
 

5. CONCLUSIONS 
 

In this paper, the performance of partial iris recognition is analyzed. The experimental results 
show that a more distinguishable and individually unique signal is found in the inner rings of the 
iris. Also, as expected, the experimental results show that the eyelids and eyelashes detrimentally 
affect the iris recognition result. For surveillance, it is more likely that the eye (away from the 
tear duct) would be captured. This is the more challenging scenario but the results show that it is 
still feasible. Finally, the results show that a partial iris image can be used for human 
identification using rank 5 or rank 10 systems.  
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Abstract – Iris recognition is a proven, accurate means to identify 
people. Commercial iris recognition systems are currently employed 
to allow passengers in some airports to be rapidly processed 
through security, to allow access to secure areas, and for secure 
access to computer networks. With the growing employment of iris 
recognition systems and associated research to support this, the 
need for large databases of iris images is growing. If required 
storage space is not adequate for these images, compression is an 
alternative. It allows a reduction in the space needed to store these 
iris images, although it may be at a cost in some amount of 
information lost in the process. This paper investigates the effects of 
image compression on iris recognition. Compression is performed 
using JPEG2000, and the iris recognition algorithm used is based 
on several methods, including the Daugman algorithm. 
 
Keywords – Iris recognition, Daugman, Hamming distance, 
JPEG2000. 

I. INTRODUCTION 

Biometric identification or verification of identity is 
currently a very active field of research. Many applications 
that require some degree of confidence concerning the 
personal identification of the people involved, such as 
banking, computer network access or physical access to a 
secure facility, are moving away from the use of paper or 
plastic identity cards, or alpha-numeric passwords. These 
systems are too easy to defeat. A higher degree of confidence 
can be achieved by using unique physical and/or behavioral 
characteristics to identify a person; this is biometrics. 

In order to use biometrics for identification, the biometric 
data must be collected by some means from the individuals in 
question. In some cases, this may be a costly and time-
consuming process, and the data obtained is valuable and 
must be protected. Additionally, data collections can create 
an inordinate amount of data that puts a strain on the 
available storage. To alleviate this problem, one available 
option is compression. In many applications where 
compression is required, but no loss of information is 
acceptable (such as monetary transactions or some medical 
applications), lossless compression is necessary; that is, 
compression without loss of information.  

There are many lossless compression algorithms available 
that work best on certain types of data, such as predictive 
coding for one-dimensional waveform data and string coding 
for text. For imagery, JPEG2000 and lossless-JPEG have 
demonstrated very good lossless compression performance 
with most types of imagery. Unfortunately, lossless 
compression has a major drawback in that the reduction in 

file size is on the order of only 1.5:1 to 3:1 for many types of 
imagery. On the other hand, these algorithms can readily 
compress data further if some loss of information is tolerable. 
It is up to the user of the data to determine how much loss of 
information is acceptable. 

The iris (see Fig. 1) is the colored portion of the eye that 
surrounds the pupil. Its combination of pits, striations, 
filaments, rings, dark spots and freckles that is evident under 
near-infrared (NIR) light make for a very accurate means of 
biometric identification [1]. Its uniqueness is such that even 
the left and right eye of the same individual is very different.  

In this paper, we investigate the effects of lossy 
compression on the ability of an iris recognition system to 
accurately identify individuals. The performance is evaluated 
by means of the change in Hamming distances between 
IrisCodes using an iris recognition implementation based on 
several algorithms, including the Daugman algorithm [1]. 
Typically, a database for an iris recognition system does not 
contain actual iris images, but rather it stores a binary file that 
represents each processed iris, such as Daugman’s IrisCode, 
stored as 512 bytes per eye. The size of such a database may 
not necessarily be prohibitive. However, we do not propose 
compressing this template data, but instead the original 
images from which they were created. We seek to compress 
the original imagery because it is this data that is valuable, 
and serves as training and testing imagery for the 
development of new algorithms. Its importance became 
apparent to the authors as we began to collect our own iris 
database, which is discussed in the next section. 

 

 
 

Figure 1: An Example Near-Infrared Iris Image 
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Compression has been investigated and used in some 

biometric applications, such as the FBI standard for 
fingerprint compression [2]-[3], or using MPEG compression 
[4]-[5] for video that may be used in facial recognition 
applications. There has been some limited research in the area 
of iris image compression [6], but this was compression 
applied to IrisCodes, not iris images. Here, we address the 
issue of compression applied to the iris imagery itself. 

II. JPEG2000 

JPEG2000 is the new compression standard published by 
the Joint Photographic Experts Group [7]. It employs state-
of-the art compression techniques based on wavelet 
technology. Like the previous JPEG standard, it allows for 
both lossless and lossy compression of imagery. Lossy 
compression means that some information is lost in the 
process, and the amount of information lost is dependent on 
the algorithm used for compression, as well as the amount of 
compression desired (that is, the size of the compressed file).  

JPEG2000 offers some advanced features, such as region-
of-interest (ROI) coding, where the user could identify 
regions of the image that should be compressed to a higher 
quality than the surroundings. ROI coding might prove 
advantageous in iris image compression, since it would allow 
the iris itself to be compressed with less loss of information 
than other areas of the image that are not used in recognition. 
For this research, both lossless and lossy compression of iris 
images were tested using the default parameters and options 
for JPEG2000. JPEG2000 was implemented using Win32 
executable code freely available from Kakadu Software [8]. 

Fig. 2 displays an original iris image before and after 
compression to 20:1 using JPEG-2000. The original image 
was collected with the LG IrisAccess 3000 system. 
Comparing the original and the compressed image closely 
will reveal some detectable differences, primarily in the areas 
of high detail in the original image where compression 
artifacts or smoothing is noted. Statistically, the two images 
are not very different; the maximum difference between the 
two images is 26 gray levels, and the overall average 
difference is 0.056328 with a standard deviation of 2.951321. 
Overall, JPEG-2000 does a good job of maintaining the detail 
information even up to a compression of 20:1. 

III. IRIS RECOGNITION ALGORITHM 

Commercial iris recognition systems today use the 
algorithm developed by John Daugman [1]. This patented 
algorithm is not available for free use, so an alternative for 
research purposes can be found in the implementation created 
by Libor Masek [9]. This algorithm follows the Daugman 
algorithm to some extent, but also incorporates parts of other 
reported algorithms. Most notably, the MATLAB code is 
freely available [10]. 

The Masek algorithm differs from the Daugman algorithm 
in several areas. This includes the use of the Hough transform 

to detect the circular inner iris boundary (the pupil) and outer 
iris boundary and its use of Log-Gabor wavelets vice Gabor 
wavelets for feature coding. When an image is input to the 
algorithm, the output is composed of two parts: the phase-
code bits that represent the distinct patterns within the iris; 
and a mask which represents the locations of iris pattern bits 
which are used to compare irises, as opposed to noise that is 
present in the image among the iris patterns (such as 
eyelashes, glare, etc.), but should not be used for comparison. 

IV. METHODOLOGY 

The images used in this research come from two sources. 
First, we used the Chinese Academy of Sciences (CASIA) 
iris database [11]. This is composed of images of 108 
different eyes, with 7 images of each eye (totaling 756 iris 
images). These images are 320x280 8-bit bitmapped images 
(.bmp), each occupying 92,160 bytes on a hard drive. A 
second database was comprised of images collected using the 
video output of our lab’s LG IrisAccess 3000. This video was 
fed to a Matrox Meteor II frame grabber installed in a Dell 
Dimension 4600 desktop computer. Using the MATLAB 
Image Acquisition toolbox, the video was piped directly into 

Figure 2: An original iris image (top) and compressed to 20:1 with 
JPEG-2000 (bottom). 
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a graphical user interface (GUI) that runs on MATLAB 7.0. 
Using this GUI, the user is set to capture video at 10 
frames/sec for one second (these numbers are based on our 
desire to capture 10 images of the same iris).  Each frame 
becomes a 640x480 8-bit bitmapped image (.bmp), and 
occupies 309,248 bytes on the hard drive.    

Performance was measured by observing the effect on 
fractional Hamming distances between the IrisCodes from the 
original and decompressed images, computed using the 
Masek algorithm [9]. The fractional Hamming distance  (HD) 
between IrisCodes A and B is defined as: 

 
    ( )code A code B   mask A  mask B

mask A  mask B  
HD

⊗
=

I I

I
.       (1)                 

 
The ⊗ operator is the Boolean XOR operation to detect 

disagreement between the pairs of phase code bits in the two 
IrisCodes (code A and code B), and mask A and B identify 
the values in each IrisCode that are not corrupted by artifacts 
such as eyelids/eyelashes and specularities. The I  operator is 
the Boolean AND operator. The || ⋅ || operator is used to sum 
the number of “1” bits within its argument. The denominator 
of (1) ensures that only the phase-code bits that matter are 
included in the calculation, after any artifacts are discounted. 
This serves as a measure of recognition performance, as it is 
the fractional Hamming distance that determines if 
identification has been made. A value of HD = 0 indicates a 
perfect match between the IrisCodes, while typically a 
Hamming distance of ≤ 0.32 allows identification with high 
confidence and is here used as a threshold for recognition. 

We compressed 44 images from each database using lossy 
JPEG-2000 to compression ratios of 4:1, 6:1, 8:1, 10:1, then 
11:1, 12:1, etc. up to 20:1 and their IrisCodes were created. 
As mentioned in Section II, when using JPEG-2000, the 
default compression parameters were selected; the only 
option chosen was the desired bit rate (i.e., compression 
ratio). For each original iris image, there were 14 compressed 
versions, which populated each database with 660 images (44 
x 15). To derive the performance results, each original iris 
image was compared against every other image in the 
database. This means that a total of 28,996 comparisons were 
made (659 x 44), of which 616 comparisons (44 x 14) were 
enrollee attempts (the irises should match) and 28,380 (44 x 
43 x 15) were imposter attempts (the irises should not match). 

V. RESULTS 

To form a baseline regarding compression of iris images, 
JPEG-2000 was used first to compress the iris images without 
loss of information. Lossless compression allows exact 
reproduction of the original image from the compressed file. 
Depending on the algorithm used, the size of the compressed 
file will vary. In addition, different images will result in 
different compression attainable when using the same 
algorithm. The lossless compression results are summarized 

in Table 1 for each database. Here, the average lossless 
compression ratio achieved for the 44 images of each 
database are presented. 

 
Table 1: Lossless Compression by Database 

 CASIA LGIris 
Average 

Lossless CR 
Achieved 

1.74 2.188 

 
Lossy compression effects on recognition performance 

were evaluated using the False Acceptance Rate (FAR) and 
False Rejection Rate (FRR), with results summarized in 
Table 2. A value of HD ≤ 0.32 was used to determine 
whether a match had been made. In computing these values 
for the LGIris database, there were zero matches made out of 
28,380 imposter attempts (images that should not have 
matched), but four false rejections out of the 616 enrollee 
attempts (images that should have matched). For the CASIA 
database, there were 38 false rejections and 0 false matches 
using the same number of attempts as for the LGIris database. 
The definition used in Table 2 for the FRR is defined in [12] 
as 

 

#  of incidents of false rejections(%) 100%
total # of samples 

FRR = ×        (2) 

and the FAR is defined as 

#  of incidents of false acceptance(%) 100%
total # of samples 

FAR = × .    (3) 

In these formulas, for each database, the denominator is 
28,996, as stated in Section IV. 
 

Table 2: Recognition Performance Results by Database 

 CASIA LGIris 
FAR (%) 0 0 
FRR (%) 0.131 0.00138 

 
Concerning the false rejection rate, it is important to note 

that three of the four false rejections in the LGIris database 
were associated with the same iris image, while in the CASIA 
database, three of the images resulted in 33 of the 38 false 
rejects. One of the CASIA images (image number 064_1_1) 
resulted in 14 false rejections in 14 attempts. This image is 
shown in Fig. 3. 

Closer inspection of this image reveals some degree of 
blurring of the iris as well as capture artifacts (noticeable on 
the eyelashes), not to mention the occlusion of the iris by the 
upper eyelid and eyelashes. We attribute the poor results 
using this eye to the image quality. Overall, the quality of the 
LGIris database imagery is superior to the CASIA imagery. 

Typical HD results using the LGIris database are 
illustrated in Table 3, here for an iris image labeled 
“Iris00001.” The left column denotes the compression ratio 
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applied to test images to which the original Iris00001 is 
compared. The middle column displays the Hamming 
distance computed when the IrisCode for the original 
Iris00001 was compared against itself and also against 
compressed versions of itself. The right column was derived 
by comparing the original Iris00001 IrisCode with an 
uncompressed image of a different eye (referred to as 
“Iris00002”), as well as compressed versions of Iris00002.  

 
Table 3: LGIris Database Hamming Distances (HD) 

Compression 
Ratio 

Iris 00001 
(same eye) 

Iris 00002 
(different eye) 

None 0 0.47078 
4:1 0.04188 0.46853 
6:1 0.14671 0.46335 
8:1 0.12487 0.46339 
10:1 0.12420 0.46480 
11:1 0.08567 0.47090 
12:1 0.08791 0.46882 
13:1 0.12366 0.46975 
14:1 0.12961 0.46978 
15:1 0.13414 0.47019 
16:1 0.10559 0.46953 
17:1 0.11156 0.46841 
18:1 0.11409 0.46666 
19:1 0.15485 0.46533 
20:1 0.19828 0.46798 

Note: HD ≤ 0.32 determines recognition 

VI. CONCLUSIONS 

From these results, JPEG-2000 has proven to be a very 
capable lossy compressor of NIR iris imagery. There was no 
effect on the false acceptance rate, and only a very slight 
effect on the false rejection rate. This is noteworthy, given the 
relatively high compression ratios these images were 
subjected to. Overall, this means that iris database storage 
could be reduced in size, possibly by a factor of 20 or even 
higher (since 20:1 was the limit of compression in this study), 
and have only a very minor affect on system performance. 
Further analysis of the false rejections is warranted, and 
research into how these results scale to a larger database is in 
progress. 

As a state-of-the-art lossless compressor, compression of 
these iris images using lossless JPEG-2000 could reduce the 
required storage for a database to approximately ½ of its 
original size. This may be sufficient in some cases, but 
significant improvement can be achieved with lossy 
compression. 

Further testing using JPEG-2000 is feasible and in 
progress to determine additional limits. One feature of JPEG-
2000 that was not incorporated in this research was the use of 
regions of interest. A priori knowledge of a region of interest 
that should be preserved with less information loss should 
improve these results. For example, determination of the 
pupil’s location, a relatively simple task in iris preprocessing, 
would allow identification of an area of interest such that the 

eye portion of the eye image could be preserved with better 
quality than surrounding areas ( such as eyelids, forehead, 
etc.). In addition, other options of JPEG-2000, such as choice 
of wavelet filters can also be examined.  

 

 
 

Figure 3: CASIA Image 064_1_1. This image resulted in 14 out of 14 false 
rejections when compressed. 
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